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1. Introduction

1.1. Prolog
Prolog is a logic programming language based on first order predicate cal-

culus [181 . It is the implementation language being used in the Japanese Fifth "
Generation Computer Project [131 and the Berkeley PLM [91 and is used for a
number of applications including expert systems and theorem proving. It has also
been employed as an implementation language for compilers [4,25,26].

It is expected that the reader is familiar with Prolog. For more information
on the language, see [5] .

1.2. Unification

Unification is the fundamental operation in Prolog. It is the method by
which Prolog variables are assigned values, and is also a test for equality.
Unification is an operation in which two expressions are made identical by finding
substitutions for some or all of the variables in the expressions. In Prolog,
unification is performed when a procedure is called, the unification being
attempted between the calling subgoal and the head of the clause being called.
Unification may also be explicitly performed in Prolog by using the '=' operator.

In addition to controlling the assignment and comparison of values,
unification affects the flow of control in Prolog programs. Failure of a unification
may cause backtracking to occur, or may cause the next candidate clause in a
program to be tried.

As an example of unification, to unify f(X,g(h)) and f(g(Z),g(Y)), where X, Y,
and Z are variables, one possible solution would substitute g(Z) for X and h for Y.
(Note that it is not necessary here to substitute anything for Z.) With these sub-
stitutions, both terms would become f(g(Z),g(h)). Note that not all pairs of
expressions can be unified, nor is there always a unique unifier (substitution) for
two terms which do unify. If two terms do unify, however, there is a most gen-
oral unifier (mgu), which is unique up to renaming of variables 1221 . If t and t'
are two terms to be unified, and a is a unifier for t and t' (so that s(t)=s(t')),
then s is the most general unifier of t and t' if and only if for any unifier p of t 42 "
and fl, there exists a substitution q such that p=qOs (0 is the composition
operation).
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N z



* a. -- r. IM aF or Irin wi -J r

-2-

1.3. Motivation I
In addition to being the fundamental operation in Prolog, unification of terms

consumes about half of the execution time of a typical Prolog system. Woo [27]
has found that a Prolog program executed by a UNSW Prolog interpreter running
on a VAX 11/780 typically spends 55-70% of its total processing time performing
unifications.

Even in the much more efficient Berkeley PLM, a similar amount of time is
spent on unifications. In the PLM, there is a class of instructions, known as get
and unify instructions, which perform unifications. [See section 9.1 for more .
information on these instructions.] In a set of six Prolog benchmarks, between
26%7 and 63% of the instructions executed by a PLM simulator were in this class.
Similarly, measuring the percentage of microcycles spent executing these instruc-
tions (a measurement of the absolute time spent by the PLM on unification) yields
comparable, although slightly lower, results. [See table 1.1.]

Table 1.1 ."
Unification In the Berkeley PLM ,'."

Benchmark % Get + Unify % Get + Unify Microcycles "'
qey42.16 46.23 -. :

mu 26.52 44.49 . .

serialize 63.26 44.98
deriv 60.37 23.37

nreverse 60.38 51.51
quicksort 56.06 37.74

1.4. Objectives
The evidence suggests that Prolog systems spend a large percentage of their

time performing unifications. This reflects the ubiquitous nature of unification in
Prolog programs in general. Reducing the time spent on unification would have a
significant effect on the execution of Prolog programs. Woo [27] mentions two
approaches to reducing the total time spent performing unifications in a Prolog-
program. The first approach is to reduce the number of unifications performed,
either by transforming the Prolog program [14] or by selective backtracking "
(1,231 . The second approach, suggested by Woo, is to create more efficient
sequential unification implementations, in his case by developing an efficient "'- '.
hardware unification unit.

There is a third approach, which is to reduce the amount of time spent per-
forming unifications by performing at least some of the unifications simultane-
ously. When unifying two terms, several subterms must usually be unified. If
some or all of these subterms could be unified simultaneously each time a
unification had to be performed, a large speedup could result. This approach
includes the solution proposed in this thesis, along with the dataflow scheme used
in the Japanese PIM-D machine [16] , and a technique for transforming some
unifications to term matching, a problem that can be solved quickly in parallel
[191. All of these other techniques will be addressed in chapter 8.

U. ".
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This dissertation will address the problem of how to speed up the unification
operation and thereby reduce the percentage of program execution time spent on
unification. The solution proposed is a compile time technique in which extensive .
preprocessing of a Prolog program is performed in order to determine which
unifications may be scheduled at compile time for later parallel execution. Data
for making these determinations is gathered using the static data-dependency
analysis (SDDA) techniques originally developed by J-H Chang 121 , but in order -.

to derive a satisfactory amount of parallelism in the unification, extensive
refinements have been made. In addition, a source-level transformation technique
called procedure splitting, which is driven by SDDA information, is used to
increase the accuracy of this data still further. The information gathered will
then be used to schedule the unifications. In addition, a similar run time tech-
nique will be discussed.

It should be noted that the three approaches mentioned above are not mutu-
ally exclusive, and particularly that some or all of them may be used in conjunc-

tion with the technique presented herein, which will be known as "parallel
unification scheduling."

1.5. Other Parallelism
Prolog lends itself to other types of parallel execution [81 . Work has been

done on the parallel execution of subgoals in a clause [21 (AND-parallelism), and
on the parallel execution of candidate clauses [6,10] (OR-parallelism). These
types of parallelism will not be addressed here, but there is no reason why they
may not be included in a Prolog implementation along with parallel unification.

I
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2. Unlfcatlon - Theoretical Results

The fastest known sequential algorithm for unification was found by Paterson
and Wegman [221 . It performs unification in time linear in the lengths of the two
terms to be unified.*

Dwork [111 has shown that unification is log-space complete for FP.t Yasuura
[281 has reached the same conclusion by a different method. This is not an
encouraging result. It means that it is unlikely that a parallel unification algo-
rithm could be significantly better than the best sequential algorithms. This is
because if a problem is log-space complete for FP, then if the problem could be
solved very quickly in parallel (say, in polynomial logarithmic time log*(1 )(n) using
11(i) processors, a class of problems known as NC), it would imply that NC =
FP, that is to say that any problem solvable with a sequential polynomial algo-
rithm could be solved very quickly in parallel. This is considered unlikely [71 .
Thus, it is unlikely that any log-space complete problem can be solved much more .- ....
quickly in parallel than sequentially.

It might be expected that Prolog head unification, that is, unification of a call
subgoal and a clause head, would be a simpler case of the unification problem and
thus possibly solvable quickly in parallel, since the two terms being unified may
share no common variables before the unification begins, due to Prolog scoping .

rules. (For example, in general unification, if the terms f(X,a) and f(b,X) are to be
unified, the two instances of X are considered to be the same variable, and substi-
tutions for one must also be made for the other. In Prolog, however, if the former
term is a call subgoal and the latter term is a clause head, Prolog scoping rules
specify that the two instances of X represent different variables.) It is simple, how-
ever, to show that Prolog head unification is also log-space complete by construc-
tion a log-space, linear time reduction from general unification to Prolog
unification:

Given two terms tl and t2 (which may have common variables) to be unified,
construct two new terms a(tl,t2) and a(X,X), where X is a variable that does not 0
occur in tl or t2. a(tl,t2) and a(X,X) have no common variables, so unifying , -
them would be a Prolog head-type unification. It is obvious that ti and t2 will
unify (using general unification) if and only if a(tl,t2) and a(X,X) unify (using %
Prolog head-unification). This reduction can be performed in constant space and
time. Since Prolog unification is a subset of general unification (i.e., any correct
general unification algorithm will correctly unify two terms which do not share
variables) and Paterson and Wegman 1221 provide a polynomial (in this case,
linear) algorithm for general unification, Prolog head unification is also in FP.
This means that Prolog head unification is log-space complete, so it is also

Paterson and Wegman provide a good example of their linear unification algorithm in
operation.

t FP is the set of functions computable in polynomial time on a sequential processor. .,'
It is equivalent to the more well-known class P of decision problems decidable in polyno-
mial time on a sequential machine. A problem, A, is log-space complete for a certain
class (in this case, FP) if every problem in that class can be transformed to A using a
transformation which takes space 0(log(n)) and time 0(n) where nt is the size of the prob- ~
lem being transformed.

-'-'- .*
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unlikely that a parallel algorithm to perform it would be significantly better than
the best sequential algorithm.

It should be noted, however, that these results indicate that there is probably
no algorithm which can unify any pair of terms in polynomial logarithmic time on
a parallel machine. However, we can show that, although there are many term
pairs that cannot be unified quickly on parallel hardware, there are many others
which can. For example, in the next chapter, we will show that attempting to
unify f(XX) and f(a,b) is inherently sequential, while f(X,Y) and f(a,b) may be
unified quickly on parallel hardware. There is evidence that most unifications in
Prolog programs fall into this category (section 5.2 and [31 ), so that it is
profitable to unify Prolog terms on parallel hardware where possible. -
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3. Parallel Unification - An Overview ,

3.1. Assumptions

3.1.1. Language

The context of the unification operation is conventional sequential Prolog, for "
example the dialect of Edinburgh Prolog presented by Clocksin and Mellish [51 .

The semantics of all operations, including unification, are assumed to be
unchanged from this sequential version. There are a number of reasons for this.
First, if the Prolog being used in this project is identical to conventional Prolog
except for the parallelism in the unification operation, it will be possible to isolate
the amount of improvement that is attributable solely to the parallel unifications.
Additionally, simulation of conventional Prolog with parallel unification can be
achieved by modifying an existing Prolog system rather than by building one from
scratch. Details of the implementation of this simulator are given in section 10.4. -. '.-

The second reason for assuming conventional sequential Prolog is that this is
the language chosen for the Aquarius project [8], into which it is hoped this work
will be integrated. One of the objectives of the Aquarius project is to identify and
exploit all available parallelism in a sequential Prolog program in order to achieve I.

maximum performance. Schemes for doing this have been suggested by Chang [2] .6!4
and Fagin [12] based on a simplified version of Conery's AND/OR execution
model [6] and appropriate hardware has been suggested by Dobry [10].

It should be noted that there are a number of other models for parallel execu-
tion of Prolog, which provide language extensions and semantic changes [24]

These models could incorporate the parallel unification scheme proposed here,
although no one has yet attempted to apply static data-dependency analysis
(SDDA) to these models. Even if SDDA and parallel unification scheduling were .'-

to be used in conjunction with these models, analysis of the effectiveness of the
scheme would be complicated by the additional performance improvements from
other parallel enhancements in the execution model.

3.1.2. Computational Model
The computational model to be used has been chosen for simplicity and

efficiency. Intuitively, the subterms of one of the pair of terms to be unified are
partitioned into a schedule (to be defined in chapter 4). The blocks of this
schedule are ordered. For each schedule block, from first to last, a unification
process is activated for each subterm in the block which unifies that subterm with
the corresponding subterm in the other term being unified. These unification
operations operate simultaneously and do not communicate with each other.
They may be considered textual operations that modify the subterms being
unified and all other variables in the terms that are affected by assignments to the '
variables in the two terms being unified. Considering these processes in textual
terms avoids the complexities of parallel memory access. The result of two
processes in the same schedule block assigning values to a variable, or assigning a
value while others refer to it, is undetermined. When all the processes in a given
schedule block complete, the processes in the next schedule block are activated.

b . . o& -
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Figure 3.1 shows an example of a schedule and its execution. (Note that the
schedule in figure 3.1 is not an "optimal" schedule. but illustrates how a non-
trivial schedule may have more than one step.)

f(X, Y, Z) one possible schedule

unified with f(A, B, C) step 1=[1,3]

1 2 3 step 2=[2]

qf, Y, rz)
step 1 ' 'fA, B, Of

X=A Z=C %

f(X1 Y,,:z)
stepI B

f(A,;:_ C)
Y=B

Figure 3.1 - A parallel unification

Since these unification processes are the only processes acting on the terms

being unified, there is no mechanism to resolve conflicting simultaneous assign-
ments to variables or to combine chains of unifications formed when a number of
variables are bound together into equivalence classes. Figure 3.2 gives examples
of both the above situations.

In figure 3.2(a), one unification process has unified X with a, the other with
b*. The result is undetermined, whereas in reality the unification would fail,
although here neither of the two processes have any knowledge of the actions of".-
the other. In figure 3.2(b), one unification process has unified X and Y (rewriting "-.

both X and Y as some new common variable - It); the other has unified X and Z
(rewriting both X and Z as some new common variable - 2). Such unifications are
correct locally, but are incorrect in the global context of the two terms being
unified. Which variable X has been unified to (.1 or -2) is undetermined, and

By convention, upper-case letters in Prolog, like X and Y, represent variables, and

lower-case letters, like a and b, represent constants. %

f When two variables are unified, in order to avoid arbitrarily giving the unified vari-
ables one name or the other, we give the unified variables a new, unique name. We will
use the Prolog convention of indicating generated variable names by an underscore tol-
lowed by a number.

K. -.-r'%
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unified with fl b' 1 ,)

X=a X-=b

(a)

unified with I '
f(Y, z"

X=Y X=Z

(b) Z" .-

Figure 3.2
a) inconsistent bindings
b) incomplete bindings

there is no indication that Y and Z have been bound to each other as a result of
this operation.

This model is computationally simple, requiring only identical unification ,.

processes and a sequencing mechanism. It can also be shown to map more easily
onto modifications of existing Aquarius project hardware (chapter 9). ;.

In constructing schedules for parallel unification of a subgoal and a clause
head, we will always construct the schedule as a partition of the subterms of the
clause head. This is because in Prolog, execution of head unification is associated
with the called clause head and not with the called subgoal. In a call, control is
transferred from the calling subgoal to the clause head, at which point both the
call subgoal and clause head arguments have been seen and unification can take
place. Parallel unification would require some mechanism to store subgoal argu-
ments and execute the call, then a number of unification mechanisms, one for
each unification proceeding in parallel. If the partition were associated with the
call subgoal multiple call mechanisms would be required to store call arguments,
locate clause head arguments, and perform unifications. Partitioning the clause
head arguments is therefore much more efficient.

r- ie.- m, ic- S;



3.2. Intuitive notion of conditions for parallel unification
Intuitively, two terms can be unified in parallel if "they have nothing to do

with each other." From the above assumptions, two terms may "have nothing to
do with each other" if the terms contain no variables in common. Since one of
the side effects of unification is to assign values to variables in the terms being
unified, then if two pairs of terms being unified share no common variables, there
is no possibility of two unification processes, one for each pair of unified terms,
assigning values, possibly different, to the same variable. In such a situation, the
two unification processes can safely go about their unification tasks without
affecting the other pair of terms being unified.

If two pairs of terms being unified share a common variable, then two
unification processes, each performing an independent unification, may derive
incorrect results, as shown in the previous section. The problem is complicated by
the fact that two term pairs may contain distinctly named variables which have
been bound to each other or to a different common variable. An assignment to
one of these variables will affect all the other variables to which it has been
bound.

The determination of which variable pairs contain variables in common with,
or bound to variables in, other terms cannot be done through a superficial exami-
nation of the text of the Prolog program. The execution of a program will assign
values to variables so that at different points in the execution, some variables may %
be bound, and at other points they may be independent. Relationships between
terms are also influenced by the values of data input to the program. J-H Chang
has developed a technique, called static data-dependency analysis (SDDA) [2
which determines a worst-case bound on the relationships between variables in a
Prolog program. Details of SDDA will be described in chapter 6. Here we will
briefly describe the information yielded by SDDA.

SDDA classifies terms into three groups: ground terms, coupled terms, and
independent terms.

Ground terms are terms which contain no unbound variables. They may
either be constants (e.g., atoms or integers) or structures whose arguments are all
ground terms. Ground terms may appear textually as variables; the point is that
when execution of a program reaches the point in the text at which that term
appears, it will be instantiated to a ground term.

A coupled term is one which shares a common variable with another coupled
term, or which contains a variable which has been bound to a different variable in
another term, and in which neither variable has been fully instantiated (i.e., made
a ground term). Coupled terms may be partitioned into equivalence classes, r
known as coupling classes, containing all terms coupled together.

An independent term is a non-ground term which contains unbound variables -
which neither appear in any other term nor are coupled to variables in any other
term.

When two terms are to be unified, SDDA may be used to partition the sub- 7'>
terms of each term into classes of ground, coupled, and independent variables.
The coupled subterms may be further partitioned into coupling classes.

1%. N.
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These concepts will be more rigorously defined in later chapters. In the
remaining sections of this chapter, a number of examples will be given to show
how these concepts apply to unification.

3.3. A simple example
We are given a Prolog program containing the call subgoal f(XY) and the

clause head f(a,b). Unifying the call subgoal and the clause head requires that
corresponding subterms, in this case X and a, and Y and b, be unified. We would
like to know whether X and a may be unified simultaneously and independently
with Y and b. First assume that X and Y are independent terms, i.e., they con-
tain no common or coupled variables, a and b are obviously ground terms and
contain no common or coupled variables. We can be satisfied that the pair X and
a and the pair Y and b "have nothing to do with each other" and can be unified
simultaneously. As can be seen in figure 3.1, X is assigned the value a on
unification, and simultaneously Y is assigned the value b. The subgoal and the
clause head unify to f(a,b).

f(X, Y

, ......

X=a Y=b

Figure 3.3 -
A correct parallel unification

Let us now assume that X and Y are coupled terms, in particular, that X and .. ,,

Y have been bound to each other. If we adhere to our initial assumptions con-
cerning the computational model and do not wish to check that parallel
unifications are consistent, simultaneously unifying X with a and Y with b will
yield incorrect results, as shown in figure 3.4(a). Having independently assigned a
to X and b to Y, there is no way to detect that X and Y may only be assigned one
of these values and that the unification should fail. If the unifications are done
sequentially (figure 3.4(b)), the process unifying Y and b already has the informa- .-,.'
tion that X (and Y) have already been assigned the value a and so the unification
fails.

3.4. More complex examples

When two pairs of subterms to be unified both contain coupled subterms, but
the coupled subterms are in different coupling classes, the two pairs still "have
nothing to do with each other" and can be unified simultaneously. As an exam- ., 9

pie, consider the unification of a subgoal f(A,B,B) and a clause head f(X,X,Y)
where the variables A and B are independent, as are the variables X and Y. How-
ever, the second and third terms of f(A,B,B) are the common variable B, and so
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X=Y

f(x, Y)
I I I I ,

X=a Y=b

X=Y, incorrect

(a)

X=Y

fX Y)

f(ai b)

X==a - *

f(a,,a)

f(a,, b

a!= b, therefore fail

(b)

Figure 3.4 -
a) an Incorrect parallel unification fv"

b) a correct version of (a)

are coupled. Likewise, the first and second terms of f(X,X,Y) are the common
variable X, and are also coupled. X and B, however, are independent of each %l :'q
other before unification according to the scoping rules of Prolog. As is shown in
figure 3.5(a), we may simultaneously unify the first and third terms of the subgoal N
and clause head, and subsequently unify the second terms. Although the first and
third terms contain coupled terms, which will ultimately be coupled to each other
upon completion of the entire unification, during the first step they are in different
coupling classes and therefore independent of each other. Unifying the second
terms connects the coupling classes and completes the unification.

N.f
49



-12-

f4A' B,:B)
step 1) f(XX,:Yj

X=A Y=B

f(Al B. B) ,
,7I--_I

f(A_ A_ B)

A=B

(a)

B A B .. ,:

X=A X==B Y=B

Figure 3.5 -
a) parallel unification involving

two coupling classes
b) an Incorrect version of (a)

Simultaneously unifying all three pairs of terms, as in figure 3.5(b) would
violate the computational model assumption stated in section 3.1 that there is no
way to gather the results of a number of simultaneous unification processes into
equivalence classes. In this case, process 1 has unified X with A, and process 2 has
unified X with B. Since the unification processes do not communicate, the implied
unification of A and B, or of X and Y, is not performed.

The previous example showed that the two terms may be in different cou-
pling classes at one point in the unification and in the same class at a subsequent
point. It is also possible that a coupling class can be broken up as a result of
some unifications. Consider the subgoal f(a,X,Y) to be unified with the clause
head f(A,A,A). The first subterm of the subgoal is a ground term, and the second
and third subterms will be assumed to be independent. In the clause head, all
three subterms are the common variable A and are therefore coupled.

.- 4"':



13-

To simultaneously unify all three pairs of subterms again will yield indeter-
minate results according to computational model (figure 3.6(b)). However, if the
first subterm pair is unified first, assigning the constant a to A, the second and
third subterms of the clause head, previously coupled, now both become ground
terms and may be simultaneously unified with their corresponding subterms in the
subgoal, as shown in figure 3.6(a).

step 1) f(ai X, Y)

((A'A, A)

A--a
r(a, X, "

step 2) 2(1 a, k :

X=a Y=a

, (a) %

I II II I

A=a A=X A=Y

(b)

Figure 3.6 -
a) splitting coupling classes

b) an incorrect version of (a)

In the previous examples, structures have not been considered. The complex-
ities in parallel unification scheduling involving structures will be discussed in
chapter 4. One example showing one of the additional problems with structures
will be presented here.

Consider the unification of the subgoal f(A) and the clause head f(g(X))
(figure 3.7). Recall the discussion of "atomic" units of unification in the previous
section. The clause head has two atomic units: the functor g/1 and the variable

.0.- ,
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X which is the first argument of the structure whose functor is g. Note that the
unification operation requires two operands. If both operands are not present, the
unification operation cannot proceed. A unification can be performed between the
variable A and the functor g/1, but no unification involving the variable X can be
performed at that time since there is no term with which it may be unified. We
say that X has no corresponding subterm in the subgoal at this time. After
g/1 is unified with A, X does have a corresponding subterm (a dummy variable
generated during the first unification) and may be unified.

*I II I"" "

(a)

step 1) (A)

F(g (0))
*....

49 1))
step 2) fg 1)

f(g (X))

(b)

Figure 3.7 -
a) Incorrect structure unification -

b) correct structure unification

-%
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4. Parallel Unification Scheduling
To simplify understanding of the techniques involved in parallel unification

scheduling, two versions will be presented. The first, simpler version describes
parallel unification scheduling when it is assumed that structures do not appear.
In this case, subterms may only appear textually as variables or constants, and
the values assigned to variables may only be variables and constants. Using these
assumptions, most of the principles behind parallel unification scheduling may be
presented and understood.

Following that, a second, more complex version of parallel unification
scheduling will be presented. In this version, subterms may be structures (whose
arguments, too, may be structures), and likewise variables may contain structure
values. Broadening the assumptions in this way requires considerable extensions
to the first approach and requires considerably more precise SDDA information to
derive an efficient schedule.

4.1. Without Structures
As mentioned above, in this section we will describe parallel scheduling for

the unification of two terms, a clause head and a call subgoal, where the terms are
of the form f(t, ... ,in) where the subterms t1, . . . ,1, are either variables or
constants at compile time. Likewise, we may assume that at the time of
unification (at run time) the variables in the call subgoal will be either unbound,
or bound to a constant or another variable. The variables in the clause head term
will be assumed to be unbound, as they would be at the time of a call. The
"atomic" unit of unification that is to be scheduled is the unification of a single
subterm i of the clause head term, that is, unification of a variable or a constant,
with the corresponding subterm of the calling subgoal.

4.1.1. Definitions
In the definitions below, assume a clause head t=f(t,... ,t,.) and a call

subgoal t'=f (t1, . .. , t. ') which are to be unified. The subterms
11, . . . ,1,t 1',  n,t are either variables or constants. V-

A schedule for the parallel unification of i and t ' is a partition 1- of the set %-g .
4 of subterms of t, { tl, . . . ,t. }, such that if tj and tj are in a block Ik of 7,

then t4 and ti' may be unified at the same time that tI and t are unified. Furth-
ermore, the blocks are ordered, so that if /7 and fT's are blocks of J1 and i <
all elements of J7i must be unified with their corresponding subterms in I' before
any of the elements of 1- are unified with their corresponding subterms. We can
represent this ordering by the notation H'i <1'IT.

A mode, similar to, but not the same as, the modes proposed by Mellish [20]
is a representation of the relationships between the subterms in the clause head

and in the call subgoal. A mode is an n-tuple ( m 1,. . . , m, ) where mi describes
the status of subterm t. (in the case of a head mode), or til (in the case of a goal
mode). Each mi has a value of g, c , or i, where g indicates that the subterm is a
ground term (a constant or a variable which has been assigned a constant value),
c. indicates that the subterm is a coupled term, in this case a variable which has 0

* A



..4

- 16-

been bound to other variables, but not to a constant (and where all the subterms
to which it is coupled also have the mode cj; there is a different value of j for
each group of coupled variables), and i denotes an independent term, a term
which is neither a ground term nor a coupled term. A mode that describes the
relation between subterms in a clause head is a head mode, and a mode which
describes the relation between subterms in a call subgoal is a goal mode.

A current mode Ci is a pair (Gi,Hi) describing the relationships between
all subterms in the clause head and call subgoal being unified after all subterms in
171 through J7i are unified with their corresponding subterms in the call subgoal
V. G i in the above pair is the goal mode and Hi is the head mode. C0 is known
as the entry mode and will be discussed in more detail below. It will be shown
in the next section that Ci may be calculated from C i. and Hi. Thus, any Ci
can be calculated from Co and U7l through U7i. The actual text of t and ' are
not necessary.

The entry mode CO is composed of the goal entry mode Go and the head
entry mode H0 . G o is calculated using static data-dependency analysis as
described in chapter 6. For the moment, we will simply assume that it exists and
is available. It represents the coupling relationships between subterms of the call -
subgoal at the time of the call but before any unification with the clause head has %_%
begun.

H0, the head entry mode, can be easily derived from the text of the clause
head itself. This is because in Prolog the variables in a clause are unbound upon
entry to that clause. Each invocation of a clause results in a new set of variables
unrelated to any other set which may still be active. Every subterm which is a
constant is of course a ground term. Any subterms which are commonly named
variables are coupled terms in the same coupling class. Any subterm which is a
variable that appears only once in the clause head is an independent term. Figure
4.1 shows some clause heads and their head entry modes.

Figure 4.1 - Head Entry Modes
clause head HO,
f(a,b) :- [g,g,
f(X,a) :- [i,g]
f(X,X) :- [c,,c 1]
f(X,Y) :- [i,i%
f(X,Y,X) :- Ici,i,c 1.
f(X,Y,Y,X) [C1,C2,C2,C1 ]

4.1.2. Determining Schedule Safety
We now define the notion of a safe schedule for parallel unification of two

terms by providing an algorithm for determining a schedule's safety. Such an
algorithm could conceivably be used to create safe schedules, but it would be
inefficient. The algorithm presented here is simply used to define the condition.

The key to the safety of a schedule is that, with one exception, for any pair
of subterms in a schedule block, none of the four subterms involved (the two

NC,
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subterms in the clause head and their corresponding subterms in the call subgoal)
be coupled to each other. The one exception is that a subterm in a clause head
and its corresponding subterm in the call subgoal may be coupled. In fact, unify-
ing the coupled subterms is essentially a no-op, and such a subterm may be dis-
carded from the schedule. Figure 4.2 gives a simple example of this. In the
schedule given, subterm 1, the first X, is unified with its corresponding subterm,
the first A. Now, prior to the second block, which contains the second subterm,
this subterm and its correspondent in the subgoal are coupled. It is not necessary
to perform the unification. We will see, however, that when SDDA yields the
information that two terms are coupled, it really means that it is possible that
they may be coupled when execution reached that point in the program. In other
possible cases, the two terms may be independent. However, if we know abso-
lutely that the two terms are coupled any time the clause is called, we may use _

this optimization.-

Briefly, the reason that two coupled terms need not be unified is that thecondition of coupling implies that the two terms are either identically named ".
unbound variables, have already been unified with each other, or have been

unified with a common variable. Thus, another unification would be redundant.
As mentioned earlier, the schedule is associated with the clause head, rather

than the subgoal, or with the clause's procedure as a whole. There are a number
of reasons for this. The first reason is that each procedure may have several
clauses. Each clause will have its own head entry mode, H0, which can easily be
computed. The H0 's will likely be different for each clause in the procedure and
such differences may require different schedules. The schedule is not associatedwith the subgoal because, first, in Prolog execution, unification cannot begin until

both the subgoal and the clause head have been seen, i.e., until control has
passed from the subgoal to the clause head. Secondly, the same Prolog pro-
cedures may be called in many different ways from many different subgoals each
of which may have a different goal entry mode and which may even have goal
entry modes that vary at different places in the execution of the program. In fact,
in the static case (section 5.2), goal entry modes used for unification scheduling
are actually generalizations of all entry modes which may occur during a call to
that clause, combined to form a worst-case estimate. This is because a clause
may be called from a number of sites in a program, each of which may call theclause with a different mode. It is even possible that a clause may be called ' -

several different ways from a single calling site. This will be explained further in
chapter 6, but we may assume that this worst-case estimate is actually the precise
goal mode of a single call subgoal which is the only site from which the clause in
question is called. It can be seen, however, that the only constant in the above
candidates for association with a schedule is the clause head, with its unvarying
head entry mode, and thus the best entity with which to associate the schedule.
Also, and not least important, it will be seen that such a scheme maps well onto
the proposed implementation described in chapter 0.

Algorithm 4.1 gives a decision procedure for determining the safety of a
schedule.



Figure 4.2: Unifying Coupled Variables
subgoal ...,f(A,A),... Go=(cl,c1 )
clause head f(X,X) :- Ho=(c2 ,c2 )

(1),(2)
17h = ((M)

After H'1 : 0.Z
... -( , I),... G I- (c ,cl) K.
f(- 1,- 1) :- Hj=(cj,cj) ; 7

f12 = (2)}
'/2 unnecessary

Algorithm 4.1: decision procedure for schedule safety.

Input:
A clause head t = f(t, ... ,,t) and a call subgoal tI' f( ,

C O = (Ho,Go) containing:

A goal entry mode G o computed by SDDA.

A head entry mode H0 computed from t.

A schedule 17= {-f1 .... ,.)- for parallel unification of t and t'.
Output: ..: "

SAFE if schedule is safe, UNSAFE otherwise.

Algorithm:
For each schedule block 1i from 7 to 17,:
1: if there exist two terms tjtkEj-- such that at least one of the pairs

(Gi-l1j,Gi-l,k), (Gi-l1j,Hi-1,k), (Hi-lj,Gi-1,k), (H-lIJH-I,k)
[H... is the element in Hi corresponding to t j, similarly for Gij. ]  ,..

is (c1,c1 ) for some cl, output 'UNSAFE' and halt.
else compute Ci according to the function Ci - next- CCi-,'i ) .  -

output 'SAFE' and halt.

Function next " C(C-1.,J7) is computed as follows:

for j to n

if t / EJ_

(Hi,Gi) = table(H,,Gi,j) according to the table 4.1 below.

If the mode for a coupling class c or c1 is augmented (see section 6), i.e., if N.
we know that all subterms in that coupling class are always coupled regardless of
the way that clause is called in the program, we may modify the table as shown in
table 4.2.

If it is known that a term is always coupled to other terms at a certain point
in a unification schedule, then if one of the coupled terms is unified with a ground

...-



Table 4.1 unification simulation table.

g i Ck

g a a a ,
Hjj 1 a b c

a) G - orsome ni m. a d e

0) H /'-Gij=fCk .  '
d) H=G.ca. .

e) all elements of Hi_. and Gi_. which are Ck or cl are replaced in Hi and Gi  Pz z
with cm for some new m. .-I%

Table 4.2 augmented unification simulation table.

g i Ck

* *

b * *

) unchanged from table 4.1
a) Hij=g, and all elements of Hi_ 1 and Gi_1 which are ck are replaced in Hi

and Gi with g.
b) Gij=g, and all elements of Hi-. and Gi-I which are c1 are replaced in Hi

and Gi with g. ..

term, all of the coupled terms become ground terms. This cannot be done
without augmented information since terms in a non-augmented coupling class
may or may not actually be coupled. As is shown in chapter 6, in the absence of .'

augmentation, we must include potentially coupled terms in a coupling class.
Since augmentation allows us to eliminate entire coupling classes, it allows greater
opportunities for parallelism in the schedule. After unifying one element of a cou-
pling class with a ground term, all the other coupled terms become ground and
can be unified in parallel (assuming that the corresponding terms are not coupled).
Thus, it will be necessary to develop techniques for augmentation to take advan- N
tage of substantial additional opportunities for parallelism; these techniques will
be explained in section 6.2.

3*o
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4.1.3. Scheduling Algorithm ". -

4.1.3.1. Algorithm

The proof that unification scheduling is NP-complete requires a number of
ideas introduced in this and following sections, and so will be deferred to the end
of the chapter. However, given that the problem is NP-complete, there are a
number of approaches that may be taken. One is to choose at random a schedule,
test it according to the polynomial algorithm of section 4.1.2, and keep trying t
schedules until a safe one is found which has a sufficiently small number of paral-
lel steps. Where the number of unifications to schedule is small, this may be a
feasible approach.

Another approach is to design an efficient algorithm which provides good
(optimal or near-optimal) results in most cases. Three such heuristic algorithms
will be presented here.

Two of the algorithms to be presented are "local" heuristic algorithms.
4 r.Given a set of unifications which have not yet been scheduled, the algorithms

select the unifications to be scheduled in the next schedule block. The process is
repeated until all unifications are scheduled. The two algorithms differ in the
method by which unifications are selected for scheduling. The third algorithm is
a "global" heuristic algorithm, in which the entire schedule is taken into account.
In this algorithm, an initial schedule is provided and then repeatedly improved by
migrating unifications upwards (that is, from the end toward the beginning of the
schedule). The process may be repeated as often as desired or until no further
improvements are made in the schedule. All three algorithms have been imple-
mented, and a comparison of their performance is given in chapter 11.

In the global algorithm, a simple initial schedule is provided, then repeatedly
improved upon. This schedule may start with one unification per schedule parti-
tion, ordered simply as the unifications appear from left to right in the original
program text, or perhaps ordered so that independent pairs, type-i pairs, type-2
pairs, and type-3 pairs appear in that order. (These terms are defined later, with
the third algorithm.)

The object of the algorithm is, starting from the end of the schedule, to move
unifications to the front of the schedule, adding them to earlier schedule blocks.
This has the effect of increasing the parallelism in earlier blocks, and, hopefully,
emptying later blocks so that they disappear, thereby shortening the effective
length of the set of unifications. Moving unifications from the end forward, rather 5-.-%.

than the other direction, was chosen because it is necessary to recompute all
modes from the block to which the schedule was moved until the end of the
schedule. The direction of migration was chosen to minimize the number of node
recomputations. P

Starting from the end of the schedule, a unification is selected and an
attempt is made to move it to an earlier block. The first block found to which % %

the unification may be moved (the search is made from back to front), that is,
where the candidate unification is not coupled to any other element of the block,
is the block to which the unification is moved. It might be possible to move the
unification even farther forward; if so, this will be discovered on a subsequent ..

do.

I.--T '
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iteration. After the unification has been moved, all subsequent modes are recom-
puted. If any subsequent block has been made unsafe by the movement, the
unification is moved back to where it was found.. If the original search yields no
block into which the unification could be moved, that is, the search reached the
first block without finding a safe destination, the unification is not moved. This
process is repeated until movement has been attempted for all unifications in all
blocks. The entire process can be repeated as many times as desired, or until no
further improvement is yielded. Algorithm 4.2 gives this global heuristic schedul-
ing algorithm.

It might be interesting to formulate this algorithm as a rewriting system
according to the Knuth-Bendix scheme 117) , which it somewhat resembles. A
number of problems would have to be overcome, however. First, since there may
be more than one solution, it may be possible that no set of axioms implementing
a scheduling system will be complete (i.e., derives exactly one irreducible schedule
from a given input schedule). Second, since the scheduling problem is NP-
complete, a Knuth-Bendix derivation will probably take exponential time to exe-
cute, while the similar heuristic algorithm presented here will work in polynomial
time. It might be possible to limit the number of reductions in any derivation to
fall within a polynomial bound, which would usually leave the derivation incom-
plete, and it is not clear how quickly the Knuth-Bendix method converges on an
optimal schedule. The above algorithm, on the other hand, is guaranteed to reach
a stable solution within a polynomial bound. Finally, the axioms/lemmas required
for transformations are substantially more complex than any of the toy group
theory problems presented in Knuth and Bendix's paper.

A
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Algorithm 4.2 - Global heuristic scheduling algorithm

Input:
C°=(G°,Ho)
t f (t 1, . W ,

Output:

T= UT, .m )..

Algorithm:
given the set {1,...,n}, partition the set into

a schedule J7so that each block JL - .
is a singleton set.

compute C1, . . . ,C. using the next C function.
p. size = n;
foreach i from p- size to 2

foreach pEfli
foreach j from i-1 to 1 .

if p can be safely placed in/-j
/ if Gy..-,p-=e or H I- lpck, for some k,

and there is no qEJij, such that
Ghe .,q-Ck or Hj-l,q=ck *-

then

move p from 17i to 17j
recompute Cj . Cp.eie using next- C
if there exists lEj,... ,p. size such that

J is unsafe according to C 1._
/* if there exists a q,rEIJ (q3r)

such that GI.I,q=Ck or H-11,q-Ck (for some k) -

and Gll,r--=ck or Hl-lr=Ck *1
then move p back to 7 and break loop

then
p- size -p. size - 1
foreach k from i to p- size

;7kik +,

As mentioned before, there are many ways by which the original order may
be chosen. The left-to-right approach is basically a random ordering. The
classification by type (independent, type-i, -2, -3) may be more successful. The
description of the second local algorithm will define the above types and provide
the rationale for this ordering.

The remaining two algorithms are "local" algorithms, in that they are con-
cerned with scheduling a single schedule block from the set of schedulable %'.'

unifications and the current mode. The first approach is to simply schedule as

'S•
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nany unifications as possible. The second approach is to predict the influence of
each unification on the parallelism in succeeding unifications and rank them
according to that criterion. Then, as many "good" unifications as possible are
scheduled, before less good unifications are considered. This approach may not
yield as large a block as possible, but it may uncover additional parallelism for
subsequent blocks.

The first of the local algorithms may be implemented by constructing a cou-
pling graph from the current mode and the set of unscheduled unifications, in p.
which each ground and independent term is represented by a node, as is each cou-
pling class. Edges representing the correspondence of subterms in the two terms
being being unified, and therefore unifications to be scheduled, are added to con-
nect nodes associated with corresponding terms. [See figure 4.3(a) for an example
of a coupling graph.] In a coupling graph, two unifications involving the same cou-
pling class are represented by edges incident on the same node. Choosing a safe
schedule block is equivalent to choosing a set of edges without common nodes.
Choosing the largest safe schedule block is equivalent to choosing the largest set %:- I..F

of edges with no common nodes [figure 4.3(b)). This is the maximal matching %
problem, which can be solved in polynomial time. Since there are unifications
leading to graphs which are not bipartite (see figure 4.3(c)), the problem can be
solved in time 0(V) where V is the number of nodes in the graph [21] . In terms
of unification, V=G+I+C where G is the number of ground terms, I is the
number of independent terms, and C is the number of coupling classes. The
scheduling algorithm for parallel execution repeatedly constructs a coupling
graph, finds the maximal matching, then alters the coupling status to reflect the ..

newly scheduled unifications (according to the function next.C in table 4.2),
repeating the process until all unifications are scheduled. If N were the total
number of subterms in the two terms being unified, then the upper limit to the
number of iterations would be N/2, the number of pairs to be scheduled (since in
some cases, one unification per schedule block might be necessary, as in figure
4.3(c)). N>G+I+2C (since each coupling group must be represented at least
twice in a unification, otherwise the variable would be merely independent). The
above algorithm performs scheduling in time O(N*V), and since N>V, the time
of execution is at least O(TA).

The second "local" approach improves on the first in a number of ways.
First, it would be desirable to reduce the exponent in the time complexity from
five to two or three. Secondly, although each iteration produces the maximal
matching at that step, the particular choices of edges (and therefore of scheduled
unifications) may reduce the size of maximal matchings in subsequent steps. For ___

example, if a unification is scheduled which unified variables in two distinct cou- W_
pling classes, in subsequent scheduling steps variables in the two classes may not
be unified simultaneously, since the initial unification combined the two previous
coupling classes into one. Had the initial unification not been done at that time,
further parallel unifications involving variables in the two coupling classes could
have been scheduled. Conversely, if a variable in a coupling class were to be
unified with a ground term, all variables coupled to it would also automatically be
unified with that ground term, and the coupling class would disappear. There
would then be nothing to keep the formerly coupled variables, now ground terms,
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f(X,a,Y) G o f (i,g,i)
f(A,B,B) Ho - (i,cl,c1 )

XW i a lY

xG g jAJ

b)

Xc a

G i -(C1,¢2,C2) '

= (c3,c3,c)

c C3

• C2

Figure 4.3
a) a coupling graph

b) a maximal matching for (a) ..
c) a non-bipartite coupling graph (S 1

from being scheduled in the same block in a subsequent step.

The heuristics to be used are, first, to delay combining coupling classes by
unifying pairs of coupled variables until it is unavoidable, and second, to unify
coupled variables with ground terms as early as possible in order to eliminate
entire coupling classes and exploit more parallelism.

In addition, unification pairs composed only of ground and independent terms
(having no coupled variables) may always be scheduled. These pairs, which we
will call Independent pairs may be discovered by simple inspection and need
not be included in the coupling graph. P.
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The algorithm for scheduling a step first schedules all independert pairs. It
then sorts each of the remaining pairs (which each contain at least one coupled
variable) into one of 3C bins, where C is the number of coupling classes. For
each coupling class, there are three bins, one each for type-i, type-2, and type-3
pairs. The pairs are divided up into these groups as follows.

. Type-I pairs contain a ground term. Unifying one of these pairs would cause
all variables coupled to the variable in the pair to become ground terms in
subsequent scheduling blocks (assuming augmented coupling information).

N? This increases the available parallelism in these later blocks, since scheduling
of those pairs will no longer be constrained by the previously existing cou- CW
ping class.

- Type-2 pairs are those pairs that contain either an independent term or con-
tain two terms which are members of the same coupling class. In the former 4<
case, the unification of such a pair will add the independent term to the cou-
pling class, but since an independent term only appears once, it will not be
seen again in subsequent scheduling blocks. In the latter case, the unification
will not change the coupling configuration at all, since the terms are already
coupled. In either case, the effect on subsequent schedule blocks is neutral; it
neither increases nor decreases subsequent available parallelism.

- Type-3 pairs contain two coupled terms which are members of different cou- 7
pling classes. When a pair of this type is unified, the two coupling classes are
joined in subsequent scheduling blocks. This decreases the amount of avail-
able parallelism in subsequent blocks, since pairs which previously involved
different coupling classes and could be scheduled to be executed in parallel
may now involve the same coupling class and must be scheduled to be unified
sequentially.

Once the pairs have been sorted, one pair is chosen from each of the type-I
bins. If a type-1 bin is empty, a pair is chosen from that coupling class' type-2
bin. A type-3 pair only becomes a candidate for scheduling if, in both coupling
classes with which it is associated, the type-i and type-2 bins are both empty.
From all such candidate pairs, a coupling graph is created, and the maximal
matching is found using the standard algorithm (again, for non-bipartite graphs).
This matching is translated back into pairs and those pairs are scheduled.

Algorithm 4.3 provides the single-step scheduling algorithm.

""'
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Algorithm 4.8: Scheduling a single step - no structures.

Input:
aso,- (Gi 1 ,Hi 1) . -

List S of pairs not yet scheduled.

Output:
ffl (new schedule block).
new S. .%-,

Algorithm:

-.A

/* initialize bins */
for k = I to C /* C number of coupling classes /

fort 1I I to 3
Bk ,1 (1;

foreach ;ES
/* schedule independent pairs */
1: if j is independent pair '
then A11rUU);
else begin /* sort remaining pairs */

if j is type-i
with coupled variable in ck
then Bk"--Bk"U{j};
else if j is type-2
with coupled variable in ch
then Bk, =BkU{i};

else if j is type-3
with coupled variable in Ck,C,
then begin . .-:

B1,3=Bj,3U{j;
end

end '

/* schedule type-I and type-2 pairs */
2: for i= Ito C

if Bi,19()
$then begin %600

choose jEBi,;

end
else if Bi,2 0{ } :' V - Y

-N
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then begin

choose jEBi,2;

end

/* find candidate type-3 pairs */
foreach (i,k)E(1, . ,C)X(1, ... 1C)
such that Bi,,Bk,,Bki,2-{
and there exists j
such that jEBi,3 and jEBk,3

add j to coupling graph, G;

find maximal matching, M, of G;

/* translate matching to schedule */
3: for all (ci,ck)EM

begin
find jEBi,sflBk,s;Hi,=FI Uj);

end

/* generate new. S */
S=S-flj;

The entire scheduling algorithm simply iterates over the single-step schedul-
ing algorithm until all subterm unifications have been scheduled. The next.C
function mentioned in algorithm 4.4 is the one initially mentioned in algorithm 4.1
and table 4.2. This function computes Ci from C._ and Hli by simulating

'. unification at the coupling status level. The single-step scheduling algorithm is
represented in algorithm 4.4 by the function single.step. Both algorithm 4.3 and
the first local algorithm may be used as the single, step function.

As mentioned before, all three scheduling algorithms, or rather their exten-
sions that handle structures, have been implemented and tested. The results are
given in chapter 11. ".-

4.1.3.2. Analysis of Scheduling Algorithms

By inspection, it can be seen that the inner loop of the first scheduling algo-
rithm (4.2) is executed O(n3 ) times for each execution of the algorithm, if n is the
number of subterms to be scheduled. The outer loop is executed p.size times,
where p- size is at most n. For each iteration of the outer loop, the second loop is
executed once for each pair in the schedule block being examined. This can be at
most n-I (if it were n, the schedule would be a single block and the algorithm
would have terminated). For each iteration of the second loop, the inner loop is
executed at most n-i times. Thus the O(n3 ) execution time. It may be necessary
to repeat the entire process no more than n times before no further improvements
can be made. Thus, the entire scheduling process will take O(n 4 ) time.

- . . . . ' N" X." 'N A.,-v"fl S 's -V! N
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Algorithm 4.4: Heuristic scheduling algorithm, no structures.

Input:¢o--(ao,Ho), ,,.P

t(t i|,...,tW

Output:fi(,,... ,Jim)

Algorithm:
S =( , . .. n)
$={1

for S3{-
", begin ~(11 ,S)=single- step(Ci_.1,S);

C7inet. (i1,1

As end

As mentioned in the previous section, the second scheduling algorithm will
take O(n6 ) time.

The third unification scheduling algorithm has an execution scheduling time
of O(N*max(NC 4)), where N is the number of subterms in the clause head t,
and C is the number of coupling classes present in the clause head and the call
subgoal, as counted in the entry mode C0 .

The single, step subroutine (algorithm 4.3) can be divided into six parts. The
first part, which initializes the bins into which type-I, 2, and 3 pairs are sorted
takes time 0(C). The second part, sorting the pairs into independent pairs and
bins for coupled pairs, takes time O(N). A single iteration of the loop can be,10.0

done in constant time, since recognition of the type of pair can be done in con- 4,.

stant time, as can the depositing of the pair in a bin. Since the loop acts on each
element in the set S, which can be of maximum size N, N iterations are per-
formed, and the step can be completed in time O(N).

The next step, in which type-i and type-2 pairs are scheduled, takes 0(C),
since C iterations of the loop are performed, and each iteration, which either
determines that a bin is empty or selects a member of that bin, is done in con-
stant time. 101%k

is The location of candidate type-3 pairs can be done in time O(P), where P 3

is the number of type-3 pairs. For each type-3 pair, the type-1 and type-2 bins
for the corresponding coupling classes can be inspected in constant time. Edges in
the coupling graph can be added in constant time if the graph is represented by
an adjacency matrix.

The maximal matching of the graph G can be found in time 0(C 4 ) using the
algorithm in 1211 .

*t 
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to translate the matching to a set of pairs to be scheduled, each edge in the
matching must be matched with its corresponding pair. If the information relat-
ing edges to pairs was stored in the adjacency graph, each translation can be done
in constant time. since the size of the matching M is bounded above by P3, the
number of type-3 pairs, the entire translation can be accomplished in P3 iterations
of the loop, so that this part takes time O(P 3).

Since P8 N, one execution of algorithm 4.3 takes time 0(max(N,C4)).

In considering the entire scheduling algorithm (4.4), the next.C subroutine
(from algorithm 4.1) takes O(N) time, since it can be implemented by going down
the two tuples G, and Hi, and modifying corresponding elements Gii and Hi if
jEf7,, according to table 4.2. If table 4.2 indicates that a coupling class must be
changed to ground terms, or that two terms must be joined, the relevant informa-
tion may be stored so that if such coupled terms are encountered later in Gi and

Hi, the appropriate changes may be made.
Since, in the worst case, the main loop in algorithm 4.4 will require N itera-

tions, one for every element of S, the entire algorithm will take time
0(max(N,C4)).

4.1.3.3. Proof of Correctness
In this section, we briefly prove a theorem concerning the correctness of the

third scheduling algorithm. In particular, we will show that the scheduling algo- .
rithm only generates safe schedules, that is, schedules which, when used as input
to algorithm 4.1, cause that algorithm to output "SAFE" and halt. Correctness
of the other scheduling algorithms may be proven similarly.

Definition- a schedule block f-l of a schedule jf is unsafe if there exists
j,kEJU7,(j76k) such that either Gi,-=c or H._,j=cl, and either Gi_1,k =C,

or Hi 1, c1, for some 1. A schedule block that is not unsafe is safe.
First, we prove two lemmas. 71
Lemma I- Algorithm 4.1 outputs SAFE if and only if all blocks of J7 are

safe.

Proof:

if - If each block of ffi is safe, then at the Oth iteration of the algorithm, HJ O-
will fail to satisfy the condition of statement 1 in the algorithm. (An unsafe
block would satisfy the condition of statement 1, since this is exactly the con-
dition for unsafeness. If it were to satisfy the condition, the algorithm would -
output UNSAFE and halt.) Since the condition is not satisfied, the algorithm
proceeds to compute Ci and examines the next block. After n blocks have
been examined, the algorithm outputs SAFE and halts.
only if - The only way that the algorithm can reach the final statement, in
which SAFE is output, is if each block Ii of IT is examined and fails to
satisfy the unsafety test i step 1. Thus, algorithm 4.1 outputs SAFE only if
all blocks in the schedule are safe.

Ad-
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Lemma 2 - Algorithm 4.3 only generates safe schedule blocks. .4I..

Proof:
The algorithm takes as input the set S of pairs which are available for
scheduling, as well as the current mode C 1 describing the relationship
among all the pairs, both those in S and those already scheduled. There are
three steps in the algorithm where pairs are scheduled, marked 1, 2, and 3.
In step 1, all independent pairs are scheduled. Since, by their definition, they
contain no coupled terms, obviously no two of them can share common cou-
pled terms, and thus they cannot cause a block to be unsafe.

In step 2, type-I and -2 pairs are scheduled. None of them can share coupled
terms with the scheduled independent pairs. Nor, since only one pair is
selected from any coupling class' type-i or -2 bins, can they share coupled
variables with each other. Scheduling these pairs will not cause the block to
become unsafe.
Finally, in step 3, pairs are scheduled from candidate type-3 pairs. The can-
didate pairs are all chosen from coupling classes which have no type-i or -2
pairs associated with them. Thus, adding any of these pairs to the pairs
already scheduled will not affect the safety of the schedule.

The coupling graph is then formed from these pairs. Edges in the matching
are chosen so that none are incident on the same vertex. If two edges do not
share a common vertex, then their corresponding pairs do not share a com-
mon coupled variable. Thus, by scheduling the pairs corresponding to the
matching, we guarantee that none of them share a coupled variable and
therefore none cause the block to be unsafe. Thus, algorithm 4.3 only gen-
erates safe blocks.

We can now prove the correctness of our scheduling algorithm.

Theorem - Algorithm 4.4 only generates safe schedules, that is, schedules that
cause algorithm 4.1 to output SAFE and halt.
Proof:

First, we show that algorithm 4.4 generates schedules. A schedule is a parti-
tion of the subterms of the clause head t. S is initially the set of sub-
terms (actually, the set of their indices) in t. single. step (described in algo- -""

rithm 4.2) schedules a subset of S and returns the remainder, that is, after
scheduling J7 from S, returns a new S=S-J7. Algorithm 4.4 continues
iterating until S is empty. Since single-step always schedules at least one
pair from S, algorithm 4.4 will terminate. )7, generated by algorithm 4.4 is
a partition of the subterms of f and is therefore a schedule.
Since single, step always creates a safe scheduling block (by lemma 2), each
block 17i in f7 is safe. Algorithm 4.1 halts and outputs SAFE if and only if
all blocks of fiare safe, so it does so on all schedules generated by algorithm4.4.

-Sa

.'. -
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4.2. Scheduling with Structures lo
When adding structures to the scheduling problem, a number of complica- '

tions appear. First, a finer-grained variety of dependency analysis is needed.
SDDA as we have seen it so far provides information on the coupling relationships
of subterms as a whole. In other words, it might indicate that the second sub-
term, say, is coupled to the fourth. However, when structures are introduced, it
may be the case that the first element of the second subterm is coupled to the first
element of the fourth subterm. If other elements are independent, there may be
opportunities for additional parallelism. We must design a way to express this
finer-grained dependency information in a reasonable notation so that good
schedules may be derived. .

Secondly, assuming that this notation exists, rules for determining the vali-
dity of a schedule must be developed. A number of problems arise here which ,
make this more complicated than when structures are not considered. For exam- !.
ple, when can the elements of a structure be unified simultaneously with the
unification of the structure's functor, and when must the functor be unified first?
Figure 4.4 gives a simple example for each case.

b..., rgx) .

(1) (2)

f(g(A)) "-

Figure 4.4a) simultaneously unifying functor and element

..,f(X), ... ... ,f(g(. '))I ... ,

f(g(A)) :- f(g(A)) :-...

Figure 4.4b) unifying functor first

•i-

Another related problem concerns "hidden" structures. A term at compile
time may appear textually as a variable, while during the unification it may take
on a structure value. It is necessary to take into account these hidden structures
as shown in figure 4.5.

It is also necessary to consider special rules for lists, which are themselves a
special form of structure.

IN.5

*1*
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f(xxx) :-

.N. v-

... , f(g(A),g(B),g(C)), ...

f(g(A),g(A),g(A)) :-

... , f(g(A),g(A),g(C)), 
....

J

f(g(A),g(A),g(A)) :-

Figure 4.5 - Hidden structure elements and their effect on scheduling

The third complication in the scheduling problem is in the scheduling algo-

rithm. Scheduling involving structures and lists is at least as complex as schedul-
ing without them. New heuristics involving lists and structures must be
developed and incorporated into the scheduling algorithm.

The remainder of this chapter is devoted to unification scheduling involving
structures and lists. The first part revises the set of definitions presented earlier
and describes the expanded mode notation. The second section expands the P.-

scheduling rules to include structures and presents a new test for schedule vali-
dity, and the third section presents an expended unification scheduling algorithm.

4.3.1. Definitions

The chief change in definitions from those used previously is that of the
mode. To schedule unifications when structures are included, modes are 10.

tI,
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fattened and labeled. As an example of flattening, take the term f(X,g(X,Y)).
The flattened version of this term is (X,g/2,X,Y). (Remember that the primary . '.
functor is unified for free, and therefore does not need to be considered.) By
flattening structures and their corresponding modes, all subterms, regardless of
depth, become easily accessible for scheduling. In order to distinguish individual
subterms (for example, the two X subterms in the above flattened structure), and
to reconstruct a term from its flattened version, the subterms are labeled. A label
is a tuple indicating the position that the subterm inhabits in the original term. If
the first element of the label is nh, then its corresponding subterm is part of the
n subterm of the given term. Likewise, if the second element of the label were
n2, the corresponding subterm would be part of the n h subterm of the n h sub-

term of the original term, and so on. For example, the second X would be labeled
(2,1). Functor subterms are considered to be the 0 th element of a subterm, but
for convenience, the final 0 in the label is omitted. The flattened, labeled version
of f(X,g(X,Y)) would be ((X,(1)), (g/2,(2)), (X,(2,1)), (Y,(2,2))).

another way to interpret the labels is as the path that must be taken to reach
a given subterm in the tree representation of the term, where, if the label is
(l 1, ... ,, ), the subterm may be reached by first visiting the lth son of the root,
and then, for each 1i in the label, visiting the 1 h son of the node labeled
(Ii, • • • ,i-)- Figure 4.6 demonstrates this for the term f(X,g(X,Y)).

X (1) g/2 (2) 1
• -°.

.-

X (2,1) Y (2,2)

Figure 4.6 - Labeling a term tree

The formal definitions are as follows:
Given a term t-f(,... ,t=( t), the flattened term of t is the tuple

(t1,,,".' . ,,'. tn,,,' . .,,.) where (t,,...,t . ,4, ,) is the flattened sub- . .ep

term of t i .

Given a subterm t=f(tl,... ,t,), the flattened subterm of t is p.

(fsn,tl,,.. .. .. n,, tnmd where (ti,. .,tj,,, ) is the flattened.
subterm of ti. ', ,
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For a constant term t=f, its flattened term is the zero-tuple (). For a con-
stant or variable subterm t=f or t=X, the flattened subterm is (f) or (X),
respectively.

Given a term t-f(t ,... ,t n) and its flattened term t =[ ,t ), the
labeled, flattened subterm of i is tL=((tl,l), . . ,(t,,m)), where i is the label
of subterm ti. The subterms of two flattened, labeled terms are corresponding
subterms if they have identical labels. The label I, of a subterm t, is determined
as follows:

Let the label prefix of a term of subterm t (to be explained later) be V..-

( 11 . . ,,,). If the ith subterm of t is a constant or variable, then its label is
(I . m,i). If the ith subterm of t, t, is a structure f . .. , ti,), then the
label of the functor f/n of t is (11-. ,l1,i) and the label prefix of the sub-
terms ti, ti,. is (11 1,i).

The label prefix of the main term is the zero-tuple (

Given a flattened, labeled clause head !L=((11,11), . ,{,kl)), and a
flattened, labeled subgoal, tL=((tl,1'),. .. ,(t1',lk')) (note that it is now possible
that k4n), the entry mode is Co=(Go,Ho), where the goal entry mode
Go-((ml').. , (mk',-k')). and the head entry mode
Ho-((mli) , .... ,(mk,/k)). Each mode element m i or mi may take the value
'i', denoting a functor of arity r. In section 6.2, we will show how static data-
dependency analysis can be improved to yield these entry modes.

Subsequent modes C,=(Gj,H) take similar form, except that the lengths of
G i and Hi may be greater than n and k, respectively, due to the addition of hid- *. .5.
den subterms. A mode element mi may be "hidden," in which case it appears

I H9, ,iH,, 'cH' or i,9H1/r. A hidden subterm is one that did not appear in the
source text of the original pair of terms being unified, but appears later as a result

of subsequent unifications. Since it does not appear textually in the original
source, it does not have to be scheduled, but its presence may give additional
information on the coupling of subterms and will therefore have an influence on
scheduling.

4.2.2. Test for schedule validity

The basic principles governing schedule validity are the same as for the case
where structures are not included. Two pairs of subterms can be unified if and
only if they share no coupled terms. The main differences are that structures
must be incorporated into this definition, and the next- C function, which gen-
erates a new current mode from the previous current mode and schedule block,
must be scheduled to include structures.

A few examples should illustrate the rules concerning structure unification.
First, we consider a very simple example with no coupled variables:

VI = f(A,B) (subgoal)

t - f(g(X,Y),Z) (clause head)

The labeled, flattened versions of the terms are:

'S °.°

N-
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Goal: t = f(g(X,Y))
Head: t = f(g(A,B))

' -((12.()),(X,(I,I)), (Y,(I,2))) ? '
tL =(g2(),(A,(1,1)), (B,(1,2))) :

.IN

Again, assume that X and Y are independent at the call. Of course, A and B
are independent of each other. The entry modes are:

Go = ((s/2,(1)), (i,(1j)), ,12)
Ho -- (s2=),(,ll),(,I2) .:

All three elements in the head mode H0 have corresponding elements in Go,
so all are candidates for parallel unification. In addition, none of the three pairs
are coupled to each other and can therefore be scheduled to be unified simultane-
ously. Thus, the schedule for this unification contains a single block I-' -
{(1),(1,1),(1,2)} and the final mode C1=(Gj,Hj) is

G - ((s/2,(1)),(C01),C2,))
H,- ((s/2,(1)), (CA.)) (2(12)

.a .r'1

Additional considerations must be made when a structure is unified with a
coupled variable. Consider the following terms:

Goal: t' = f(A,A)
Head: t - f(g(X,Y),Z) '-

and their flattened, labeled versions:
S--((A,(1)), (A,(2))) All-'

tL. -- ((g/S,(1)), (X,(I,I)), (Y,(1,2)), (Z,(2))) .7..

Assuming that A is unbound at the call, the entry modes are

Ho "- ((s/2,(1)), (i,(1,1)), (i,(1,2)), (i,(2))) -, ..

Subterms labeled (1,1) and (1,2) in the head have no corresponding subterms
in the goal and are therefore not candidates for unification at this time. Of the
remaining two subterms, only one may be unified because the corresponding terms
in the goal are coupled. We choose subterm (1). The resulting mode %
C1 =(G,H) is: U"

G 1 -- (s/ ,(1)',(H/,(1,1)), (cH,(1,),( ,2) (cH,2,),(a,(, ))..."'..
G , ((s/2,(l),( 1,2)il, i,1,,( 2)),,2) (2,. 1),C - ..

Note that unifying subterm pair (1) caused the two coupled (c) mode ele-
ments to be replaced with functor and hidden argument mode elements. Since
subterm (1) in the goal was coupled to subterm (2), both subterms had to be
replaced, and the corresponding arguments were coupled.

,% _% *r
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At this point, we can either schedule pairs (1,1) and (1,2), or schedule pair (2)
alone. We cannot schedule (2) along with (1,1) or (1,2) because subterm (2) in the
goal has two hidden arguments, one of which is coupled to subterm (1,j) and one
to (1,2). When unifying a functor with a variable, it is necessary to make sure
that none of the functor's arguments are coupled with anything else that is being
coupled at the same time. (Since hidden arguments are not schedulable, the
unification processor unifies all hidden arguments when their non-hidden functor
is unified. Section 9 will discuss in more detail.) After unifying pairs (1,1) and
(1,2), we get:

G 2 =f ((s/2,(M), (cH,(10)) (cH,(1,2)), (s/2,(2)), (c2//,(2,1)), (cH,(2,2))) "'"

H2 = ((s/2,(1)), (c2 ,(1,1)), (c3 ,(1,2)), (i,(2)))

We are now free to schedule pair (2):

G 3 = ((s/2,(1)), (cH(IM (cH(1,2 (s/2,(2)), (c (2, (c,(2,2)))

G 3 = ((s/2,(1)), (c2 ,(,1)), (c3 ,(1,2)), (s/2,(2)), (c2 ,(2,1)), (c ,(2,2))) -.' *

We are finished, since subterms (2,1) and (2,2) in the head are hidden and
need not be scheduled.

[Although we are only scheduling those subterms which appear textually in
the clause head, it may be possible to use hidden structure information to improve
unification performance. This will be touched upon in section 9.4.1

The three criteria, then, for schedule safety, are 1) presence of corresponding
subterms, 2) independence of simultaneously scheduled pairs, and 3) independence
of hidden arguments. All three criteria must be addressed in algorithm 4.5.

Algorithm 4.5 - Extended decision procedure for schedule safety -

Input: .--,A clause head t=f (ti, . . . ,tn) and a call subgoal t'=f(t', I .. ,). .

A flattened, labeled entry mode Co=(Go,Ho) containing:

A goal entry mode G o computed by SDDA A head entry mode H0 com-
puted from t.

A schedule J7= j7, ... ,j7m} for parallel unification of t and t' which is
a partition of the set of labels of elements of H0 .

Output:
SAFE if schedule is safe, UNSAFE otherwise.

Algorithm:

,":....

.. ,

::. ' . - . * - - .. . . . .



for each schedule block .i from ff" to HIm:

for each JEjfl /* correspondence test */
if there is no H,..,1,,EHi- or Gj-jjEG_-.

SHij is the mode element in Hi with label j.
Similarly for Gij.]

output 'UNSAFE' and halt.
for each jEJ7i
if there exists a k such that
HiI,kf=fH/rn (for some m), or
Hi -,kffic_/ (for some m), or

Hi-I,k--il , or
Hil,k---gH , or
Gi-,&=* /m , c ,iH, or gH,
and j is a prefix of k,

if there exist j,kEJ7T,(j4k) such that %

at least one of the pairs

is (c,c) for some 1,
output 'UNSAFE' and halt.

compute Ci=nezt. C(Ci,Ji).
/* note that we compute new mode using hidden arguments,

as well as scheduled subterms. */

Function nezt C(C,jH,)
returns(C,)

( G i,Hi )=Ci_ . -,.

for each jEJI7
(H i ,Gj)=table(Hi ,Gjj)

Ci=(Gi,H } -"

return(C,)

Function table(H,,Gjj)
returns(Hi, Gi)

look up entry Hjj/Gj j in table 4.3
and modify H and G i according to instructions.

return new (Hi,Gi)

-aA
t- jL ..
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Table 4.3 extended unification simulation table.

g i c s/mn :

g a a b m
Hi-lj i a c d h

Cl e f g J
s/n n i k

Note: all entries not mentioned remain unchanged. Also, if an element of Hi or
G i is hidden before being changed, it will remain hidden afterwards. .

a) Hj=Gi,=g.
b) if augmented, replace all ck in Gj,Hj with g.

if not augmented, H,,=Gj,=g.
c) Hi-=G,=c, for some new, unique p.
d) H,,=Gij=Ck.
e) if augmented, replace all c! in Gj,H with g.

if not augmented, Hi-=Gi-=g.
• -r .. **f) Hij---Gii-'-cl... ..:

g) replace all ck in Gj,H with cl.

Hi-=G.i=e /n
let j=(l 1,•••,I ) :'

for k - ito n
add H,..,I,,k)-iH to H,
(H,,G,)=table(H,Gj,(1i, . . . IP,k))

i) o'-' .

Hij=Gjj=s /m
let j= (l, . . ., )
for k - ito m

add G,,l,, . .. i) to Gi

if H,(f,, . , is hidden
(Hi,Gi)= -table (Hi,Gi,(il, . . . ,ip,k)) -

/* if not hidden, we schedule them explicitly

and will have to examine them at the point at which
they are scheduled. */

4% . _%

I[:: ~*.'...
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for each kEGi and Hi such that k=c
k = s/m

* let label(k)f(i . ,1,)
for q = 1 to m

if kEG,
add Gj,(ls, ,,, 9)=Cpj# to C,
(where pq is a new, unique value)

else add Hy,(l,, .. ,,q)=c- to Gi
let j-=(i t , .. i)

for q = 1 to m.
(H,,Gj=table(H,G,(1 , ... ,1,,q))

, k)

for each zEGi and Hi such that z=ck
" z " --= S/n .

let label(z) = (11, l** ,

for q =1I to n
if zEG,

add G,, ... , ,q) - cp to Gi A g "l

(where Pq is a new, unique value)
else add H ,(l, ... ,t,,q)=C to Gi.

let j'-(i1,''" , Ip)
for q =1 to n

if .... ,,q) is hidden 
;'%I

,.: ~ ~~(Hj,Gj)-table(Hj,Gj,(l n, . .,"0))

1)

let j=( l, )
for k = I to n

if Hi,(,... ,l,k) is hidden
then if GI ,Lk does not exist

add Gi,(, .. ,,k)=iH to G i

/*add a placeholder */(Hi,Gi)--table (Hj,Gj ,( , ., lp,k )) NN

m)

let j=(, ,p)
for k = 1 tom

add Gi,(j1, ... k)g to G

/* expand ground term - all args are ground */
(Hi,Gi)=table(Hi,Gi,(l 1 , .,k))

Si . ,,.. .. , . , . . .. ' ' w . ,, ... , .,., _.., . ,,., ¢ , ,, .--. ,. ,..,



-41-

n)
let ---(tlI,.. ,p)
for k = 1 to n

add H,(Ib ... ,,,k)--g to H i

/* expand ground term - all args are ground */
(H,,Gi)=table(H,G,(I1 , ... ,Ip,k))

Note that the table function is recursive in order to simulate unification
between (possibly) nested structures. Also, it is important to note that the
"atomic" unit of unification scheduling is an element of the flattened version of
the clause head. If, in the course of unification, a variable (one of these atomic
units) takes on a structure value, the arguments of that structure are not schedul-
able. They are represented as "hidden" arguments which are implicitly unified by
the unification processor which unifies the value associated with the variable and
its corresponding subterm. If an explicit structure appears in the clause head, its

'1 functor is an atomic unit, as is each element of the structure's flattened subterms.
Each of these elements is schedulable. Since the arguments are schedulable, they
are not represented by hidden arguments to be explicitly unified when their func- . i
tor is unified. Rather, the validity testing algorithm waits until they appear expli-
citly in the schedule before their unification is simulated, just as the unification of
these arguments would wait until they explicitly appeared in the schedule.

4.2.3. Scheduling algorithms
In this section, we present the modifications that must be made to the previ-

ously presented scheduling algorithms so that they may handle structures.

The modification of algorithm 4.2 is straightforward, and involves a change
in the notion of when a partition block is safe. In addition to the conditions pre-
viously mentioned, it is only safe to add a the pair p to the block Hiy if there is
an element in Gj_1 corresponding to p (i.e., if G/_t exists) and if, in IT, p is a
structure with hidden subterms, there is no q E/', or no r which is a subterm of
that q, which is coupled to any of p's hidden subterms. Likewise, when recomput-
ing subsequent modes, if q E 17i for some subsequent block Ili, there must exist
a corresponding Gi,,, and no hidden subterms of elements in Ii may be cou-pled to other elements or hidden subterms of other elements of of H. If this -

occurs, the block is unsafe and we must backtrack.
In extending the second heuristic algorithm, which attempts to find the max-

imum maximal matching of the coupling graph, some complications arise. First,
in adding edges representing unifications to the coupling graph, only those
unifications for which a corresponding element in the current goal mode exists
may be considered. Secondly, since structure unifications involving hidden sub-
terms may involve more than two coupling classes, the coupling graph becomes a
coupling hypergraph. If p, for example, is a subterm pair to be scheduled in a
block Hl, and Hi...,, = s/n where the arguments of Hi...,, are hidden, and
several of them are coupled terms, the unification will interact with all these

' " ° ' " °¢ " " .r," ' " ' " " " " = ' ' . " '"e % " . * ", ". " % '. '% " " '" " % "-%, ". "" ". "4
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coupling classes, so the corresponding "edge" must be incident on all of these cou-
pling class nodes. Thus, we have a hypergraph. Figure 4.7 gives an example of
this. Finding the maximum maximal matching of a hypergraph is NP-complete,
since it is equivalent to the n-dimensional matching problem 115] , but for the size
graphs contemplated there exist relatively efficient exponential backtracking algo-
rithms to find this matching, or equivalently, to find the maximum independent
set of the edge graph derived from the hypergraph.

Hi: ( Cj,(l))-// -->..
Gj: ,(/,')(20 )A3(1,2)),....

Cl

AA

C ~~~- - --- t/ %Wt.:

/(1) "-v

/ 3

0C 2  ,_ _,-------- C3

Figure 4.7 - A hyperedge in a coupling hypergraph

In the third heuristic algorithm, we must determine where unifications involv-
ing structures fit into our rankings. Table 4.4 shows how these unifications are
ranked.

An argument of a structure is externally coupled if it is coupled to a term
outside the structure.

It should be noted that structure terms are ranked similarly to other
unification pairs. The functor itself is considered to be a ground term. If there
are two or more coupling classes associated with the unification, it is type-3. If
there are none, or none externally coupled, it is independent. If there is exactly
one, then the unification is ranked as whatever the argument unification would be
ranked if it were not a structure.

As in the second algorithm, type-3 scheduling now involves choosing candi-
date subterms from those for which corresponding modes exist in the current goal
mode. Additionally, the coupling graph is also a hypergraph. As in that case, the
graph can be transformed to an edge graph and the largest independent set found. _:_

4.3. Lists ,.A

Up to now, it has not been shown how lists fit into the scheme presented
here. Lists are a special case of a Prolog structure. As in LISP, the common list
notation is shorthand for a more cumbersome car/cdr structure notation. In Pro-
log, the list functor is ./2, where the first argument is the car of the list and the
second argument is the cdr. Thus, [1,2,31 is shorthand to .(1,.(2,.(3,ni1))). An

ZN
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Table 4.4 - Table of unification types

cG _1  .s/. .

c 3 2 1 3
2 i i i/2/3

g 1Ii i i/1/3

s (w/o hidden args) 1 i i i
s (w/hidden args) 3 i/2/3 i/1/3 i/w/3

i- independent pair -.J
I- type-2 pair
2- type-2 pair -

3- type-3 pair

If not externally coupled, independent pair. Else if exactly one externally Iw
coupled argument, type-2 pair. Else type-3 pair.

i/1/3-
If not externally coupled, independent pair. Else if exactly one externally .'

coupled argument, type-i pair. Else type-3 pair.

1/1/3-
If not externally coupled, independent pair. Else if exactly one externally
coupled argument, then type-2 if coupled argument corresponds to an i argu-
ment, otherwise type-i. Else type-3 pair.

alternative is to consider lists to be variable-arity structures, but such an
approach would not fit in well with the generality of the scheduling scheme
described here, or with static data-dependency analysis. The solution to be used

here is to transform all lists into their structure form before SDDA and scheduling
are performed. If this is done, no additions need be made to SDDA or the
scheduling algorithm.

Some Prolog implementations may have special instructions or data struc-
tures designed to increase the efficiency of list handling. In some cases, it may be,.. -.
possible to recover these optimizations by use of implementation-dependent
peephole optimizations. An example of this, for the parallel version of the Berke-
ley PLM, will be presented in chapter 9.

4.4. Complexity of problem

In order to prove that unification scheduling is NP-complete, we will first IN
prove a simple special case that does not satisfy all the requirements of schedule
safety to be NP-complete. This special case will be called "simple unification

scheduling" and differs from unification scheduling in that unifying two coupling
* classes does not join the classes, nor does unifying a ground term with a coupled

term cause all of the coupled terms to become ground.

.% . ,.- 49.
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DEFINITION: ,o
A schedule flis considered safe for simple unification scheduling under
entry mode C0=(G0 ,H0) if, for each /iEfr then for each j,kEffl (jik),
none of the following are true:

i) GOj -= and Ho,k=c1 (for some cl)
ii) GOj=cL and Go,k= cL
iii) HOj=CL and He,k=cL
iv) Ho,=c, and Go-=ci
In other words, no distinct unifications in a given schedule step may involve

terms in the same coupling class. Note that nothing is said here about joining or
grounding coupling classes. Also note that structure subterms are not considered.
They will be considered at the end.
DEFINITION:

The simple unification scheduling problem (SUS) is given as follows: Given an
entry mode C0=(G0 ,H) and a schedule size D E Z +, is there a schedule '
with D steps which is safe under unification scheduling?

THEOREM:
SUS is NP-complete.

Proof: '*

It is simple to show that SUS is in NP. Given an entry mode C0=(G0 ,H0 ),
create a possible schedule from the elements of the head entry mode. Test this
schedule for safety under simple unification. Assuming that the head entry mode
has n elements, the worst case would be that in which the schedule had exactly
one step with all n elements. Checking each pair would take time 0(n2). The
best case would be the schedule in which there were n steps of one element each.
Such a check would take linear time. The average case would be a schedule with
%/n steps of %/v'n elements each. Such a schedule would take time 0(n N/ ) to
check. In any case, the test of a given schedule may be accomplished in polyno-
mial time.

The completeness part of the proof may be demonstrated through a reduc-
tion from resource-constrained scheduling 115] , which can be formulated as fol-
lows:

Given m processors, a set T of tasks, each of length l(t) = 1, r resources,
resource bounds Bi = 1, and resource requirements Ri(t), such that
ORi(t)<B i for each task t and resource i, and where each task uses no
more'than 2 resources, and an overall deadline D E Z +. Is there a m-
processor schedule o for T that meets D and obeys the resource constraints!
We transform the problem as follows:

i) order the tasks (arbitrarily) from t, tT.  ".-"'

Create a head and goal entry mode H0 and Go, respectively, as follows: 9.1

ii) For each resource ri, 1<j<r, create a corresponding coupling class c(r,) as
follows:
if rp is only used by one task, c(rj) i.
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if ra is used by more than one task, c(ri) = ca.
iii) For each task ti from t I to tT: V"". -

if ti uses no resources, m
G o ,i ----H o ,i --L .

if ti uses exactly one resource, ri,
Go, -- i H0,i = c(ri)

if ti uses two resources, rp~rk,

Go,i = c(rj) Ho,i = c(rk)
Since the use bound on any resource is 1, it is obvious that no two tasks may

attempt to use a common resource during the same step of a schedule. A one-to-
one correspondence may this be made between scheduled tasks and scheduled
unifications, and it is clear that a task schedule o of length D obeying the resource
bounds if and only if a safe simple unification schedule U7 of length D exists.

Thus, SUS is NP-complete.

We now define a more general concept of unification safety that takes into
account the joining and grounding of coupling classes.

DEFINITION:
Given a schedule 17 and an entry mode C 0, two coupling classes c1 and Ck
are Joined at schedule step J7, if in step U7i, terms in coupling class ci or a '1z
class joined to c. at Ii, and a term in coupling class ck or a class joined to %

k at H[ri ae unified.

DEFINITION:
Given a schedule U and an entry mode C0 , a coupling class c. is grounded
at step 17i if, in step Ili, a term in coupling class c. or some other class
which is joined with c. at Ui is unified with either a ground term or a term
in a class which is grounded at stepr. ,

DEFINITION:
A schedule 17 is considered safe for general unification scheduling
under entry mode Co=(G 0 ,H0 ) if, for each fIifrI then for each j,kE Ji
(j3k), none of the following are true:

i) Go,.=e and Ho,k=Cg (for some cl)

ii) G*,,=ci and Gok=C1

iii) Ho,=c1 and HO,k=c,
iv) Ho,.=c1 and Go,k=c1
unless cl is grounded one of the r steps immediately prior to ',
AND
for each fli'E1, for each j,k E 17 (j3k) such that G 0,. or H0,.=c, and

GOA or Ho,k=Cm (for some 14m), there is no step 17I in the n steps %.%1-

immediately prior to 17 such that ck and cL are joined in j/j.

The above definition is the safety criterion expressed in section 4.1.2 when
the parameters r and n are arbitrarily large. It is clear that simple unification

d'd
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scheduling is the special case where r and n are both equal to 0.
DEFINITION:

The general unification scheduling problem (GUS) is given as follows:
Given an entry mode C*=(G,H), a schedule size D E Z+, and parameters
n and r to the general unification safety definition, is there a schedule Ul
with D steps which is safe according to general unification scheduling with
parameters n and r?

THEOREM
GUS is NP-complete.

Proof:
1) It is clear that GUS is in NP, since any possible schedule may be tested for

safety in polynomial time using algorithm 4.1. Olm

2) Since SUS is a special case of GUS, GUS is NP-complete.

The above ignores the scheduling of structures. Since unification without
structures is a special case of unification with structures, and unification with
structures is in NP (using the polynomial safety test of algorithm 4.5), GUS with
structures is also NP-complete.

'.i-e %.
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5. Models of Execution

The scheduling scheme described in chapter 4 may be reallized in a number
of ways. These may be divided into two broad classes, depending on whether the
scheduling operation is performed at compile time or at run time. Each scheme
has certain advantages and each provides certain tradeoffs. In addition, special
architectural features are required to accommodate the various schemes. Those
schemes in which scheduling is performed at compile time are known as static
models because scheduling is based on the static source representation of the pro-
gram and because the schedule, once determined, is not altered at run time.
Schemes in which scheduling is performed at run time, when the call takes place,
are known as dynamic models, since the schedule is based on the actual values of
the variables at the time of the call. Since the values may change from one
instance of a call to the next, the unification schedules may differ each time a call
is repeated.

5.1. Dynamic Scheduling

In the dynamic scheduling model, the schedule is determined each time a call
is performed. Thus, the schedule is based on the actual values of the variables in
a call rather than on general predicted values as provided by SDDA. Conse-
quently, there is a greater likelihood of finding an optimal schedule in many cases. .

In a typical dynamic scheme, execution of a call involves the following opera-
tions:

1) The entry mode of the calling subgoal is computed.

2) The head of the called clause is found and its entry mode is computed.

3) The subterm pairs are scheduled for unification. The scheduling algorithm
may be either local or global as described in the previous chapter.

4) The schedule is executed.

There are many optimizations and variations on this general procedure. For
example, if execution backtracks to a call and a different clause may be called, -.-
execution may be restarted at step 2 above, since the values of the subterms in
the calling subgoal will not have changed and the subgoal's entry mode need not
be recomputed. The entry mode of the called clause head may be different, how-
ever, and must be recomputed.

Since variables in the clause head are always unbound on clause entry and .--,..
the head entry mode may be determined simply by examining the text of the
clause head, head entry modes do not vary from call to call and may be pre-
computed at compile time and stored for later reference. Thus, step 2, above,
may be replaced with an operation which looks up the pre-computed head entry O"q

mode of the called clause.

If a local scheduling algorithm is used, the scheduling and unification opera-
tions of steps 3 and 4 may be interleaved. In particular, the unification simulation
associated with the next. C function may be replaced by the unification itself,
after which new modes may be recomputed. In other words, the procedure in
figure 5.Ia may be replaced by that in figure 5.lb.

h"i..

-.- .
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a)
<given Go,Ho>
-schedule li
- compute G1,H 1 using next.C
- schedule 172
- compute G2 ,H2 using next. C

-scheduleH""
- execute J"'
-execute 112

- execute '-

b)
<given G0,H0>
- schedule 17,
- execute H,
- compute G1 ,H1 from current values of t,t'..,.,
- schedule 112
- execute 112
- compute G2 ,H2 from current values of t,t'

- schedule 1 n d

Figure 5.1a) non-interleaved scheduling and execution[

b) interleaved scheduling and execution

The interleaved execution of figure 5.1b is only an optimization if computing
current modes from the actual values of the head and goal is faster than using
next. C. The process can be definitely sped up, however, by executing a schedule
block in parallel with the computation of the next mode, using next- C, since these
operations may be done in parallel. Interleaving the scheduling and unification in
this way can reduce the number of scheduling and unification steps by a third.

As an example of a dynamically scheduled unification using the local max-
imum independent set heuristic, consider the following unification. The calling
subgoal is f(A,B,C,D) where B and C have been coupled and A and D are indepen-
dent. The clause head is f(X,X,Y,Y). Renaming the variables so that coupled'..,. ,
variables have the same name and independent variables have distinct names, we *

have
goal: f(. 1,.2,. 2,.3)

head: f(. 4,_ 4,. 5,. 5)
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In step 1, the goal entry mode G o is computed. It is (i,cc 1 i).

In step 2, the head entry mode H0 is computed. It is (c 2 ,cX,c3,c 3). As men-

tioned previously, this can be pre-computed at compile time.

In the interleaved scheduling/unification phase, we must first find a max-
imum independent set. One such set consists of the first and third subterm pairs.
These are scheduled for the first block and immediately executed. In parallel with
the unification, the goal and head modes are recomputed. The result is

goal: f(. 1,.2,.2,.3) goal mode: (c2 ,c,c,i)
head: f(- 1,_ 1,.2,.2) head mode: (c2,c2,c1 ,C1 )

Of the remaining unscheduled subterm pairs, either the second or the fourth
alone form a maximum independent set. We choose the second, execute it, and
recompute the modes and get

goal: f(. 1,. 1,_.1,.3) goal mode: (c2 ,c2,c2,i)
head: f(- 1,- 1,. 1,- 1) head mode: (c2, 2,c2 ,c2) ."

Finally we choose the remaining fourth subterm pair, execute its unification,
and are completed.

An architecture which executes such a dynamic scheme needs a number of
special hardware features (figure 5.2). First, the architecture needs to be able to
compute the entry mode of a call subgoal. Secondly, there needs to be some sort
of hardware scheduling unit. In the above case, this unit can choose a maximum
independent set, but it may be a unit implementing any scheduling algorithm. In
the above example, the hardware needs to be capable of computing new modes 06"-
from the old modes and the last schedule block, but we have shown that a unit
which can compute modes from the terms resulting from execution of a schedule -

block may be used instead, although one may have to pay a price in efficiency. % I e

Finally, the architecture needs to have a number of homogeneous unification units
and some method of assigning unification operations to them.

In figure 5.2, the mode memory stores the current modes and the term %

memory stores the current values of the terms. The mode computer calculates
new modes, and the scheduler schedules the subterms for unification. The
dispatcher and unification units actually perform the unifications. All of these-''.
capabilities may be implemented in microcode or directly in hardware.

The advantage of dynamic scheduling is that precise data dependency infor-
mation may be used for scheduling. As we shall see, SDDA, used in static
scheduling, generates worst-case information. For example, if SDDA indicates
that two subterms are coupled, this really means that they may sometimes be cou-
pled. Since scheduling is based on these computed entry modes, the two subterms
'will not be unified in parallel even if, on some occasion, they happen to be
independent. In dynamic scheduling, since we do scheduling from the actual
values of subterms, the coupling information is precise. However, we shall see in

the next chapter that, in practice, the worst-case information is generally very
close to the precise information, since any given Prolog procedure is likely to be
called in only a few different ways, and that even where there is a difference

:-.
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ip

mode computer. .k

term memory mode memory

p scheduler

dispatcher

.u 000 unification units

memory ]

Figure 5.2 - Dynamic scheduling hardware organization

between worst-case and precise information, that difference can be minimized or
even eliminated by use of procedure splitting.

In addition to having one not-very-decisive advantage over static scheduling,
dynamic scheduling has a number of disadvantages. First is the hardware over-
head necessary to implement dynamic scheduling. As shown in the next section,
static scheduling requires substantially less hardware. Second is the time over-
head needed to compute modes and schedules. Static scheduling also needs to
compute these, but it is all done before the program is run, while dynamic
scheduling takes time during the actual running of the program. A dynamically
scheduled program would run more slowly than the same statically scheduled pro-
gram, although it would take more time to compile a statically scheduled pro- --
gram. A statically scheduled program would presumably be compiled only once, %%
however.

.. ,
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A third disadvantage of the dynamic model presented here is that the same
modes and schedules would have to be computed each time a call is made with
the same entry modes. This redundant work can be avoided if modes and their
associated schedules are cached. The cache would be an associative memory
whose key is the entry mode and which would also contain the schedule derived
from that entry mode. Upon executing a call, the entry mode would be computed . 4-
and looked up in the cache. If the mode is found in the cache, the associated

schedule is used. Otherwise the schedule is computed and added to the cache.
Such a scheme would speed up dynamic scheduling, but would require a further
hardware overhead. Such a cache might have to be quite large.

6.2. Static Scheduling
Chapters 3 and 4 have given the details of static scheduling. Basically, static

scheduling involves determination of entry modes and sched1j'es at compile time,
and execution uf these previously computed schedules at run tile. The schedules
are included as part of the compiled code. Unlike dynamic scheduling, static
scheduling requires a simpler architectural extension (figure 5.3). All that is
needed is a set of homogeneous unification units and a dispatcher to assign them
unification operations. A synchronization mechanism is needed o insure that
unifications in one scheduling block are not started before unifications in the pre-
vious one are completed. This may either be a fork/join mechanism or simply
having the unification units operate in lockstep. The latter approach will be used
here since it appears to be no less powerful than fork/join and requires a simpler
control mechanism.

Unlike dynamic scheduling, static scheduling also requires a substantial
software system to extract maximum parallelism from a Prolog program's
unifications.

dispatcher/synchronizer "

.

:..-' *%

memory

Figure 5.3 - Statically scheduled unification hardware

The disadvantages of the dynamic scheme are the advantages of the static
scheme. There is less hardware overhead or scheduling overhead at run time.

ON i
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Instead, all analysis and scheduling is done once, at compile time, incorporated
into the compiled code, and is available for repeated executions of the program
without being recomputed.

It appears that static scheduling has a number of advantages over dynamic"-
scheduling. Because of this, we will not consider dynamic scheduling any further,
but will instead concentrate on implementing static scheduling.

'.
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S. Static Data-Dependency Analysis
Static data-dependency analysis (SDDA) is a pre-compile time technique

developed by J-H Chang [21 for determining the coupling relationships between
variables and for computing entry and exit modes for clause heads and subgoals.
In addition to its use in gathering information for unification scheduling, it is also
used for scheduling AND-parallelism and computing intelligent backtracking des-
tinations. Chang provides a description of SDDA in his dissertation. Unfor-
tunately, that description contains a number of errors and omissions, as well as an
unrigorous and non-algorithmic presentation of the tech.ique. The next section
(6.1) presents a correct and algorithmic description of SDDA and should be con-
sidered to supersede the corresponding chapter in 121 . The following section (6.2)
presents a number of enhancements to Chang's technique which may be used to so" % 4.

improve the data yielded by SDDA and create more efficient unification schedules.

6.1. Description
SDDA is a recursive technique by which the information contained in one or

more query entry modes (i.e., modes representing the relationships among
terms in a top level query) are propagated through a Prolog program so that
entry and exit modes for each subgoal and clause are computed. These nodes are 1%.,
identical to those previously described, that is, an n-ary predicate's mode is an n-
tuple (m, .,in) where each m i is either g (a ground term), i (an independent
term), or ci (a coupled term). (At this point, we are not considering structure
modes. They will be considered in section 6.2.)

Intuitively, mode information is propagated by considering in turn each can-
didate clause of the called procedure. For each subgoal of the clause, an entry
mode is computed and the called procedure is similarly examined. When all
subgoals in the clause have been examined, an exit mode for the clause is corn-
puted which is passed back to the calling subgoal. In order to allow a more -;
efficient analysis and avoid infinite recursion, the notion of "better" and "worse"
modes has been created. (These will be defined shortly.) If a procedure is about
to be examined, and it has already been examined with a worse entry mode, the
new examination is abandoned. Also, a list of all clauses currently "active" (i.e.,
being examined) is maintained. If a clause is examined which is currently active,
and at least one of the activations has an entry mode worse than that of the
current clause, the new examination of that clause is abandoned. In this way,
infinite recursion is avoided.

When the algorithm is completed, each clause and subgoal in the program 4..%.W
which is potentially reachable through the top-level query or queries will possess
an entry and exit mode. These represent the relationships between subterms in W7:
the predicate (clause head or subgoal) just before and after the predicate is exe-
cuted, respectively. The framework of the algorithm (6.1) is presented below; the
gaps will be filled in later. The reader should assume the existence of two tables
maintained by the program and initially empty. One is a table of procedures and
their "worst-case" entry and exit modes (i.e., the worst entry and exit modes withwhich they have been examined). The second is a table of the currently active

clauses and their entry modes. Clauses may be identified using the procedure

Zy -
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name and an index. Table management is a simple task in Prolog; entries may be
added and deleted using assert and retract, respectively, and lookups are simple
Prolog calls. 7A
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Algorithm 6.1 - Static Data Dependency Analysis

Input: query entry mode

Output: query exit mode, and entry and exit modes for each reachable clause. '

Algorithm:

main: query- exit- mode = sdda(query. entry, mode);

sdda(current, entry, mode): p

if worst-case entry mode for the procedure exists /* from table */
and current entry mode is better than the worst case entry mode,
and a worst-case exit mode exists for the procedure
then

exit mode = worst-case entry mode for that procedure;
return exit mode;

else -.-

worst-case entry mode = owcg(current entry mode,
worst-case entry mode for procedure);

/* owcg = optimal worst-case generalization - see below */
current entry mode = worst-case entry mode;
replace old worst-case entry mode for procedure in table with new one;

for each candidate clause in called procedure:
if current clause is active with an entry mode equal to or
worse than the current entry mode
then

go back to top of loop and try next clause; 6

else
add current clause and entry mode to activation table;
create variable status V0 from the clause head and current entry mode;
for each subgoal i from I to n /* n = number of subgoals in clause /

if subgoal i is unify goal %
then generate V from VI and subgoal;
else if subgoal i is call
then

create a subgoal entry mode for the subgoal using V._1;
subgoal exit mode = sdda(subgoal entry mode); F.

create V from subgoal exit mode and Vi._;
else V-=Vi-; /* for other calls */

create current exit mode from V;
worst-case exit mode = owcg(previous worst-case exit mode for

procedure from table, current exit mode); .<
replace old worst-case exit mode for procedure in table with new one;
remove current clause and entry mode from activation table;

return worst-case exit mode;

4.

_* .
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At this point, there Are a number of issues which need to be resolved:
* Defining the worse/better relationship on modes.
* Defining the optimal worst-case generalization.
* Defining the variable status Vi.
" Generating V0 from the entry mode and the clause head.
* Generating a subgoal entry mode from the subgoal and the previous variable

status.
" Generating V from a subgoal exit mode and V- 1. N N

* Generating a clause exit mode from V and the clause head.
* Generating V from V_! and a unify goal. M

A mode is considered worse than another mode if the first mode is more
general. In other words, if the first mode will allow creation of a schedule which
is safe (although non-optimal) from the second, we say that the first mode is worse e-P
than the second.

A number of preliminary definitions must be presented before the
better/worse relationship is defined.
DEFINITION:

Let M=(m1 , .. ) ,m) and M=(m I, ,m,') be two entry modes for the
same procedure, and c- and C be mode elements of M and AP, respectively, '
representing coupled terms. cj covers ck if and only if for each i such that
mi#=Ck, mi=C.'

In other words, ci covers ck if (i I m'-ck} _{i I m-n=ck}. " " ' :

A better/worse partial order may be said to hold on corresponding individual
mode elements of M and MI (i.e., mi and mi for any i). (Notation: a > b means
a is worse than b," or "b is better than a," a = b means "a equs b," and a

<> b means "there is no relationship between a and b.") The following order-
ings hold:

c,> g (for any j)
Cj > i
C,>ck iff ci covers Ck and ck does not cover c.

g=g __

Cj=Ck iff c covers Ck and c covers ej
Cj < C, iff cj does not cover Ck and ck does not cover c.

Using the above relation, we can define a similar better/worse partial order
for entire modes:
DEFINITION:

Let M=(m1 ,... ,m.,) and M'=(m11,... ,m,') be two modes for the same
procedure. Then M is worse than Ml (M>M) if and only if there exists an ,,:.'-.,
i,l<i<n, such that mi>mi' and for all other j,l<j<n, jpi,m,>m/' or

' %. , k~,, 7.. ..L''p.p AZ ' V-



- 57 -

Likewise, M=AP if and only if for all i, 1<i<n, m=m. If neither
M>MP,M'>M, nor M=AP holds, then M<>M'.
In algorithm 6.1, there are situations in which it is necessary to find a mode

which is worse than or equal to both of two other modes. Such a mode is called a
worst-case generalization. For example, if a clause is called with two modes M
and M, a worst-case generalization MAv can be found from which a schedule can
be derived which is safe for both M and M. We would like M" to be as "good"
as possible so that the maximum potential parallelism will be available in M". By
"as good as possible" we mean that MN>M,M">M, and for all M" such that
M"'>M and MN>AV, it must also hold that MIN>MN. That is, M" is the best
mode that is worse than or equal to the two modes it is generalizing. We call M"
the optimal worst-ease generalization (oweg) of M and M'.

Let M=(m, m...,ma) and M==(m 1,... ,m. 1  be modes. Then the
optimal worst-case generalization owcg(,M))=MN=(mjN,. . m,,N) is com-
puted as follows:

for each j from I to n
if m= g and m-= g, then m= g
ifmj= g and m/ i, then m -=i
if mj= i and m- i, then m -

if m=ci and m/=ck, then m R=c where
c, covers both ci and c€

if m .i= i or g and m/--ek,

or m --ck and m/- ior g,
then m-=ci where c1 covers Ck.

Table 6.1 gives some examples of optimal worst-case generalizations.

Table 6.1 - Optimal worst-case generalizationsM M' M
(g,i) 0i,g) (iji) .c

(c I,c 1) (g,i) (C I,€ 1)5"
(€.€ ,i) ('I,€,c2} (C3,C3IC3)3 "'

It can be shown that M" is the optimal wcg. Let M"-owcg(M,M') be com-
puted by the above algorithm. We examine three cases: M>M',M= M, and
M<>M'.
1) (M=M) If M=M, then M=M and M"=M' as follows:

for each j,<j _n,mj=m/, which means that
* mn = g and m!= g, in which case mA = g.

* Mi. - i and m/ = i, in which case mi-" = i.

* m=c i and m'=Ck, where Ci=Ck, in which case m,"=c where c-=cj
and Ci=Ck (c covering both ci and ok)

Thus, M"=M and M =M. For any M"'>M or M', it must therefore hold
that M">'M.

* .*...
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2) (M>M') Let M"=owcg(M,Mprime) and M>M,. Then for each
j,1l5j:5n, one of the following two possibilities holds:
* m,>m,', in which case m,"=miy.

* m,=mj, in which case m fN-mj. Z
Thus, MN=M, and any M'>M must also be >M". %4.

3) (M<>M) Let MN=owcg(M,Mprime) and M<>M'. Then for each
jJ.l5j:5n, one of the following possibilities holds:
. m> m/, in which case m m,--m.
* m3 >mj, in which case m/=m/.

* my=m, in which case mA-my. (wlog)

* m <>m (only true when mj=c, mM =Ck, and Ci <>Ck), in which
case mN=c where c1 covers both ci and c€. Thus, mra>mi and

Thus, by the definition of the > ordering, M">M and M">M..
To show that MN is optimal, let MW=(m1 , I* m.) be some mode such

that M">M,M">M', and M M>M". By definition of >, there exists a
k,l <k<n such that mk">mk"'. Examining the corresponding elements of M
and M','-"'

* if mk> k', then mkm=min by definition of owcg. Therefore mk>mkN,
which implies that M m>M does not hold; a contradiction.

* If mk'>Mk, then mk =mk'. This means that mk'>mkk ", implying that
Mw>M' does not hold; again a contradiction.

* If mk=mk', then mkN-mk (wlog). This, too, leads to a contradiction.
0 If Mk <>mk' , then mkN--' i such that €i covers Mk and Mk' . Assume (wlog)

that mLII=c3 for some j. Since m&N>mN, ci must cover ci, but not vice

versa. Since ci covers mk and mk' and ci does not cover ci, ci must not
cover either mk or mk'. Therefore, either M'>M or M'">M' does not
hold; again a contradiction.
Therefore, if MN=owcg(M,M'), there can be no mode MI such that

M M>M, Mm>M, and MN>M"ff, and MN is the optimal worst-case generaliza-
tion.

Given a clause

h :- ,. . . ,gn

the variable status Vi represents the coupling relationships among the variables
occurring in the clause up to and including subgoal gi. V is a triple (GjI,,Cj)
where Gi is the set of all variables which are ground after returning from subgoal
gi, 1i is the set of all variables which are independent at that point, and Ci is the
partition of all coupled variables into coupling classes. V0 represents the variable
status after the clause head and before the first subgoal.

• .4 ..
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Variable status triples are constructed from the previous variable status triple
(i.e., V from V. 1) and the exit mode of subgoal g,. V0 may be computed from
the clause entry mode and the clause head. The entry mode for a subgoal gi can
be computed from V 1 and the text of the subgoal itself. Finally, the clause exit
mode may be computed from the clause head and V.. The remainder of the sec-
tion shows how variable status triples and subgoal entry modes are generated.

Execution of a subgoal may be considered to transform the variable status
which existed before the subgoal was executed to that which exists after the
subgoal is executed. In other words, V is a function of a subgoal g, (the i th

subgoal in a clause), its exit mode M,, and the previous variable status V-1. The
basic principles behind generating a new V are the following:

" if two variables in different coupling classes in V_.1 are coupled in the exit
mode Mi, the coupling classes are joined in V.

* if a variable is ground according to Mi, it becomes ground in V, regardless
of what it was in VJ.

" a variable is independent in V. if and only if it is not ground, and either it
was independent in V I and nothing has been done to change that in Mi
(such as binding it to a coupled term), or it is a member of a singleton cou-
pling class.

• all variables in a ground term are ground.
" all variables in an independent term must be assumed to be coupled to each

other. We must assume this because it is the worst case. Likewise, we must
assume this for coupled terms.

An algorithm for generating V is presented as algorithm 6.2. ....

Generating Vo from the clause head is a special case of algorithm 6.2. For
the input variable status V-1, we use the empty status GC-=---=-C-- 0,....

instead of the subgoal, we use the clause head, and instead of the subgoal exit
mode, we use the clause entry mode. The algorithm will yield V0.

% M

* - ,.
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Algorithm 6.2 - Generating V from Vi-, etc.

Input: Previous variable status V 1 =(G-, 1, 1,Ci 1 ),
subgoal t=f (t1 , .•. ,tn), and the subgoal's exit mode M=(m, .. .

Output: New variable status Vi.

Algorithm:

for each c which appears as at least one element in M: .6

ccl = 4 
Jf

for each mk such that mk=cj: %
eel = eel U {all variables in t,)

for each c- class in C,: for
if eel n34 o
then

eel = eel U c class
C, =i C,- {c. class}

C = Ci U ( l}
for each i from I to n

if mi = g
then

Gi = Gi U (all variables in ti)
I.=I-G.
remove any variables in t, from all coupling classes in Ci  .

else if m i = i
then

eel = (all variables in ti)
for each c- class in Ci

if eel n c. class o .
then

eel = eel U c. class
C = C,- {c. class)

Ci = Ci U {c. class)
for each c- class in Ci /* clean up Ci */

if Ic classl 1
then

I- Ii U c. class
C = C, - {c. class)

else if c. class n ii o
then Ii = 1i - c. class

To generate a new Vi when the subgoal is an explicit unify goal A=B, it is
possible to transform A=B to a call subgoal =(A,B), where =/2 is a procedure
with a single clause =(X,X). This, however, is extra work and will result in

• "
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unnecessary worst-case results. Instead, a more direct approach will be used.
When A and B are simple variables, table 6.1 indicates the appropriate action to
take in transforming V_ into Vi.

Table 6.2
Unity subgoal transformations on V_ 1

BE
G-I Ii-I or not in V_ 1  c. class in Ci--_ ;

Gil a b e

A i-i or not in Vaj c d 9
c-claw in Ci_ I f hi

First, V=V._, then
a) No action
b) G , ffi U (B), I ffi ,- (B)
c) G=Gj u {A), I=ff - {A}

d) Create new coupling class {A,B}, add to C,. Remove A and/or B from Ii.
e) Add B to Gi, remove B from coupling class in C. If coupling class now sin-

gleton, move remaining element to Ii. Remove coupling class.
fSame as e), but use A instead of B.

g) Add A to B's coupling class. Remove A from 4, if necessary.
h) Same as g), but exchange A and B in above definition.

i) Combine A and B's coupling classes in Ci.

More complex unify goals may be transformed into this above simple one. If
A and B are both structures, e.g., f(A,... ,A,) = f(BI... ,B,,), they may be
replaced with a series of simpler unifications, e.g., A1=B, ... =B,.

If only A is a structure, e.g., f(A I ... ,A,) = B, we follow the following pro-
cedure:

0 if B is ground, A, ... ,A. all become ground. s.

: if At,... ,An are all ground, then B becomes ground.

• Otherwise, replace the above unify goal with f(A, .. . ,A.) = f(BI, . .. ,B)
where a coupling class containing B,B,... ,Bbn is added to V,...
To generate a subgoal entry mode, one needs the subgoal (say, the iOh one),

and the previous variable status triple, V,-1. The algorithm is simple and is given
below as algorithm 6.3. Generating a clause exit mode is a special case of the
above. Instead of a subgoal, the clause head is used, as is V.. The result is the
clause exit mode.

LasSi:6Z



-62-

Algorithm 6.3 - Generating a subgoal entry mode

Input: igh subgoal t = f(t,, . .. tn),
previous variable status Vi I.

Output: entry mode M = (m,... , in)

Algorithm:
forj - 1 ton

if t, contains no independent or coupled variables 0-

then m = g
else if tI contains no coupled variables and any

independent variable in tj appears in no other -,

subterm of t
then mi = i
else if any coupled variables in tj appear in no other

subterm of t
then mi - i
/* because the entered clause will only "see" the variable(s)

once and they will seem independent */
else /* linked to other subterms */

if t, contains a variable which appears in a previous
subterm ti, or contains a variable coupled to a
variable appearing in a previous subterm tk
(previous: tk where 1 < k <i)

then m=cL where mk is C1
else m-=c for some new, unique, I. .

One should note that the clause entry modes described here are equivalent to
the goal modes described in chapters 3 and 4, which are used in scheduling. Head .% '

modes, as described in chapters 3 and 4, have no real equivalent here, although
they may be generated using algorithm 6.3, where V,,=(G.,I.,C.) such that
G ----C. = 0 and In = {all variables in the clause head).* k A.

One SDDA issue which is irrelevant to unification scheduling, but is important to
AND-parallelism and backtracking is the notion of the generator of a variable, which is, .. ,

used in generating a dependency graph for the clause. Chang describes the generator of a 
variable as any previous subgoal in the clause that "contributes to the binding of the vanri-
able." Aside from questions about the precise meaning of "contributing to the binding of
a variable" (e.g., does adding another variable to X's coupling class "contribute" to X's
binding?), the non-enhanced SDDA proposed by Chang cannot handle even simple, obvi-
ous caes of "contributing to binding." For example, in the subgoal
.... Z - s(XY), A .Z),

where X, Y, and Z are all independent before the call, the entry mode of the call will sim-
ply be entry(f,l,(i)), since structure elements are not distinguished. If f contains the single
clause

qgn,.)).

X will have been bound, but the exit mode of the call will still be exit(f,l,(i)), and Z will
still be independent since Y is independent. Also, there is no evidence of X having been

, -L • ..,-.tz,.-.
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